ترغب بنشر مسار تعليمي؟ اضغط هنا

Human De-occlusion: Invisible Perception and Recovery for Humans

147   0   0.0 ( 0 )
 نشر من قبل Qiang Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we tackle the problem of human de-occlusion which reasons about occluded segmentation masks and invisible appearance content of humans. In particular, a two-stage framework is proposed to estimate the invisible portions and recover the content inside. For the stage of mask completion, a stacked network structure is devised to refine inaccurate masks from a general instance segmentation model and predict integrated masks simultaneously. Additionally, the guidance from human parsing and typical pose masks are leveraged to bring prior information. For the stage of content recovery, a novel parsing guided attention module is applied to isolate body parts and capture context information across multiple scales. Besides, an Amodal Human Perception dataset (AHP) is collected to settle the task of human de-occlusion. AHP has advantages of providing annotations from real-world scenes and the number of humans is comparatively larger than other amodal perception datasets. Based on this dataset, experiments demonstrate that our method performs over the state-of-the-art techniques in both tasks of mask completion and content recovery. Our AHP dataset is available at url{https://sydney0zq.github.io/ahp/}.

قيم البحث

اقرأ أيضاً

In this paper, we propose a novel iterative multi-task framework to complete the segmentation mask of an occluded vehicle and recover the appearance of its invisible parts. In particular, to improve the quality of the segmentation completion, we pres ent two coupled discriminators and introduce an auxiliary 3D model pool for sampling authentic silhouettes as adversarial samples. In addition, we propose a two-path structure with a shared network to enhance the appearance recovery capability. By iteratively performing the segmentation completion and the appearance recovery, the results will be progressively refined. To evaluate our method, we present a dataset, the Occluded Vehicle dataset, containing synthetic and real-world occluded vehicle images. We conduct comparison experiments on this dataset and demonstrate that our model outperforms the state-of-the-art in tasks of recovering segmentation mask and appearance for occluded vehicles. Moreover, we also demonstrate that our appearance recovery approach can benefit the occluded vehicle tracking in real-world videos.
Recognition of human poses and actions is crucial for autonomous systems to interact smoothly with people. However, cameras generally capture human poses in 2D as images and videos, which can have significant appearance variations across viewpoints t hat make the recognition tasks challenging. To address this, we explore recognizing similarity in 3D human body poses from 2D information, which has not been well-studied in existing works. Here, we propose an approach to learning a compact view-invariant embedding space from 2D body joint keypoints, without explicitly predicting 3D poses. Input ambiguities of 2D poses from projection and occlusion are difficult to represent through a deterministic mapping, and therefore we adopt a probabilistic formulation for our embedding space. Experimental results show that our embedding model achieves higher accuracy when retrieving similar poses across different camera views, in comparison with 3D pose estimation models. We also show that by training a simple temporal embedding model, we achieve superior performance on pose sequence retrieval and largely reduce the embedding dimension from stacking frame-based embeddings for efficient large-scale retrieval. Furthermore, in order to enable our embeddings to work with partially visible input, we further investigate different keypoint occlusion augmentation strategies during training. We demonstrate that these occlusion augmentations significantly improve retrieval performance on partial 2D input poses. Results on action recognition and video alignment demonstrate that using our embeddings without any additional training achieves competitive performance relative to other models specifically trained for each task.
This paper focuses on the problem of 3D human reconstruction from 2D evidence. Although this is an inherently ambiguous problem, the majority of recent works avoid the uncertainty modeling and typically regress a single estimate for a given input. In contrast to that, in this work, we propose to embrace the reconstruction ambiguity and we recast the problem as learning a mapping from the input to a distribution of plausible 3D poses. Our approach is based on the normalizing flows model and offers a series of advantages. For conventional applications, where a single 3D estimate is required, our formulation allows for efficient mode computation. Using the mode leads to performance that is comparable with the state of the art among deterministic unimodal regression models. Simultaneously, since we have access to the likelihood of each sample, we demonstrate that our model is useful in a series of downstream tasks, where we leverage the probabilistic nature of the prediction as a tool for more accurate estimation. These tasks include reconstruction from multiple uncalibrated views, as well as human model fitting, where our model acts as a powerful image-based prior for mesh recovery. Our results validate the importance of probabilistic modeling, and indicate state-of-the-art performance across a variety of settings. Code and models are available at: https://www.seas.upenn.edu/~nkolot/projects/prohmr.
With the rise of machines to human-level performance in complex recognition tasks, a growing amount of work is directed towards comparing information processing in humans and machines. These studies are an exciting chance to learn about one system by studying the other. Here, we propose ideas on how to design, conduct and interpret experiments such that they adequately support the investigation of mechanisms when comparing human and machine perception. We demonstrate and apply these ideas through three case studies. The first case study shows how human bias can affect how we interpret results, and that several analytic tools can help to overcome this human reference point. In the second case study, we highlight the difference between necessary and sufficient mechanisms in visual reasoning tasks. Thereby, we show that contrary to previous suggestions, feedback mechanisms might not be necessary for the tasks in question. The third case study highlights the importance of aligning experimental conditions. We find that a previously-observed difference in object recognition does not hold when adapting the experiment to make conditions more equitable between humans and machines. In presenting a checklist for comparative studies of visual reasoning in humans and machines, we hope to highlight how to overcome potential pitfalls in design or inference.
We consider the problem of estimating frame-level full human body meshes given a video of a person with natural motion dynamics. While much progress in this field has been in single image-based mesh estimation, there has been a recent uptick in effor ts to infer mesh dynamics from video given its role in alleviating issues such as depth ambiguity and occlusions. However, a key limitation of existing work is the assumption that all the observed motion dynamics can be modeled using one dynamical/recurrent model. While this may work well in cases with relatively simplistic dynamics, inference with in-the-wild videos presents many challenges. In particular, it is typically the case that different body parts of a person undergo different dynamics in the video, e.g., legs may move in a way that may be dynamically different from hands (e.g., a person dancing). To address these issues, we present a new method for video mesh recovery that divides the human mesh into several local parts following the standard skeletal model. We then model the dynamics of each local part with separate recurrent models, with each model conditioned appropriately based on the known kinematic structure of the human body. This results in a structure-informed local recurrent learning architecture that can be trained in an end-to-end fashion with available annotations. We conduct a variety of experiments on standard video mesh recovery benchmark datasets such as Human3.6M, MPI-INF-3DHP, and 3DPW, demonstrating the efficacy of our design of modeling local dynamics as well as establishing state-of-the-art results based on standard evaluation metrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا