ﻻ يوجد ملخص باللغة العربية
We construct special cycles on the moduli stack of unitary shtukas. We prove an identity between (1) the r-th central derivative of non-singular Fourier coefficients of a normalized Siegel--Eisenstein series, and (2) the degree of special cycles of virtual dimension 0 on the moduli stack of unitary shtukas with r legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.
A p-divisible group, or more generally an F-crystal, is said to be Hodge-Newton reducible if its Hodge polygon passes through a break point of its Newton polygon. Katz proved that Hodge-Newton reducible F-crystals admit a canonical filtration called
Let $k$ be a number field. We give an explicit bound, depending only on $[k:mathbf{Q}]$ and the discriminant of the N{e}ron--Severi lattice, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface
We study the Picard-Lefschetz formula for the Siegel modular threefold of paramodular level and prove the weight-monodromy conjecture for its middle degree inner cohomology with arbitrary automorphic coefficients. We give some applications to the Lan
Let $D$ be a $p$-divisible group over an algebraically closed field $k$ of characteristic $p>0$. Let $n_D$ be the smallest non-negative integer such that $D$ is determined by $D[p^{n_D}]$ within the class of $p$-divisible groups over $k$ of the same
Let $X$ be a curve of genus $ggeq 2$ over a number field $F$ of degree $d = [F:Q]$. The conjectural existence of a uniform bound $N(g,d)$ on the number $#X(F)$ of $F$-rational points of $X$ is an outstanding open problem in arithmetic geometry, known