ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetry underlies stability in power grids

297   0   0.0 ( 0 )
 نشر من قبل Takashi Nishikawa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Behavioral homogeneity is often critical for the functioning of network systems of interacting entities. In power grids, whose stable operation requires generator frequencies to be synchronized--and thus homogeneous--across the network, previous work suggests that the stability of synchronous states can be improved by making the generators homogeneous. Here, we show that a substantial additional improvement is possible by instead making the generators suitably heterogeneous. We develop a general method for attributing this counterintuitive effect to converse symmetry breaking, a recently established phenomenon in which the system must be asymmetric to maintain a stable symmetric state. These findings constitute the first demonstration of converse symmetry breaking in real-world systems, and our method promises to enable identification of this phenomenon in other networks whose functions rely on behavioral homogeneity.



قيم البحث

اقرأ أيضاً

Large-scale integration of renewables in power systems gives rise to new challenges for keeping synchronization and frequency stability in volatile and uncertain power flow states. To ensure the safety of operation, the system must maintain adequate disturbance rejection capability at the time scales of both rotor angle and system frequency dynamics. This calls for flexibility to be exploited on both the generation and demand sides, compensating volatility and ensuring stability at the two separate time scales. This article proposes a hierarchical power flow control architecture that involves both transmission and distribution networks as well as individual buildings to enhance both small-signal rotor angle stability and frequency stability of the transmission network. The proposed architecture consists of a transmission-level optimizer enhancing system damping ratios, a distribution-level controller following transmission commands and providing frequency support, and a building-level scheduler accounting for quality of service and following the distribution-level targets. We validate the feasibility and performance of the whole control architecture through real-time hardware-in-loop tests involving real-world transmission and distribution network models along with real devices at the Stone Edge Farm Microgrid.
A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network---a symmetric state---the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does such behavior---which we term asymmetry-induced synchronization (AISync)---occur in oscillator networks? Here we present the first general scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than the exception in a wide class of physical systems that can be seen as multilayer networks. Since a symmetric network in complete synchrony is the basic building block of cluster synchronization in more general networks, AISync should be common also in facilitating cluster synchronization by breaking the symmetry of the cluster subnetworks.
The stable operation of the electric power grid relies on a precisely synchronized state of all generators and machines. All machines rotate at exactly the same frequency with fixed phase differences, leading to steady power flows throughout the grid . Whether such a steady state exists for a given network is of eminent practical importance. The loss of a steady state typically leads to power outages up to a complete blackout. But also the existence of multiple steady states is undesirable, as it can lead to sudden transitions, circulating flows and eventually also to power outages. Steady states are typically calculated numerically, but this approach gives only limited insight into the existence and (non-)uniqueness of steady states. Analytic results are available only for special network configuration, in particular for grids with negligible Ohmic losses or radial networks without any loops. In this article, we introduce a method to systematically construct the solutions of the real power load-flow equations in the presence of Ohmic losses. We calculate the steady states explicitly for elementary networks demonstrating different mechanisms leading to multistability. Our results also apply to models of coupled oscillators which are widely used in theoretical physics and mathematical biology.
The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. Here, using the North American power grid, we identify, quantify, and analyze the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causes of cascading failures relevant for grid design and operation, and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.
Natural and artificial networks, from the cerebral cortex to large-scale power grids, face the challenge of converting noisy inputs into robust signals. The input fluctuations often exhibit complex yet statistically reproducible correlations that ref lect underlying internal or environmental processes such as synaptic noise or atmospheric turbulence. This raises the practically and biophysically relevant of question whether and how noise-filtering can be hard-wired directly into a networks architecture. By considering generic phase oscillator arrays under cost constraints, we explore here analytically and numerically the design, efficiency and topology of noise-canceling networks. Specifically, we find that when the input fluctuations become more correlated in space or time, optimal network architectures become sparser and more hierarchically organized, resembling the vasculature in plants or animals. More broadly, our results provide concrete guiding principles for designing more robust and efficient power grids and sensor networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا