ﻻ يوجد ملخص باللغة العربية
Natural silver targets have been irradiated by using a 50 MeV alpha-particle beam in order to measure the activation cross sections of radioisotopes in the 40-50 MeV energy range. Among the radio-products there are medically important isotopes such as $^{110m}$In and $^{111}$In. For optimizing the production of these radioisotopes and regarding their purity and specific activity the cross section data for every produced radioisotope are important. New data are measured in this energy range and the results of some previous measurements have been confirmed. Physical yield curves have been calculated by using the new cross section data completed with the results from the literature.
Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuc
Cross sections for the 168Yb(alpha,gamma)172Hf and 168Yb(alpha,n)171$Hf reactions were measured by means of the activation method using alpha particles with energies between 12.9 MeV and 15.1 MeV. The spectroscopy of the gamma rays emitted by the rea
Excitation functions for the production of the 181,182m,182g,183,184g,186Re and 183,184Ta radionuclides from proton bombardment on natural tungsten were measured using the stacked-foil activation technique for the proton energies up to 40 MeV. A new
A preferred candidate for neutrinoless double-{beta} decay, 150Nd, is present in natural neodymium at an abundance level of 5.64%. However, neodymium could be activated by cosmic rays during the period it spends on the Earths surface. Its activation
(Shorten version of the PRC abstract) Alpha-induced reactions on 127I have been studied using the activation technique in order to provide cross section data for the modeling of the astrophysical gamma process. The relative intensity of the 536.1 keV