ترغب بنشر مسار تعليمي؟ اضغط هنا

Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement

196   0   0.0 ( 0 )
 نشر من قبل Chen Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-light image enhancement aims to improve an images visibility while keeping its visual naturalness. Different from existing methods, which tend to accomplish the enhancement task directly, we investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps. Inspired by the color image formulation (diffuse illumination color plus environment illumination color), we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color. To this end, we propose a novel Degradation-to-Refinement Generation Network (DRGN). Its distinctive features can be summarized as 1) A novel two-step generation network for degradation learning and content refinement. It is not only superior to one-step methods, but also is capable of synthesizing sufficient paired samples to benefit the model training; 2) A multi-resolution fusion network to represent the target information (degradation or contents) in a multi-scale cooperative manner, which is more effective to address the complex unmixing problems. Extensive experiments on both the enhancement task and the joint detection task have verified the effectiveness and efficiency of our proposed method, surpassing the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset. Our code is available at url{https://github.com/kuijiang0802/DRGN}



قيم البحث

اقرأ أيضاً

Low-light image enhancement (LLIE) is a pervasive yet challenging problem, since: 1) low-light measurements may vary due to different imaging conditions in practice; 2) images can be enlightened subjectively according to diverse preferences by each i ndividual. To tackle these two challenges, this paper presents a novel deep reinforcement learning based method, dubbed ReLLIE, for customized low-light enhancement. ReLLIE models LLIE as a markov decision process, i.e., estimating the pixel-wise image-specific curves sequentially and recurrently. Given the reward computed from a set of carefully crafted non-reference loss functions, a lightweight network is proposed to estimate the curves for enlightening of a low-light image input. As ReLLIE learns a policy instead of one-one image translation, it can handle various low-light measurements and provide customized enhanced outputs by flexibly applying the policy different times. Furthermore, ReLLIE can enhance real-world images with hybrid corruptions, e.g., noise, by using a plug-and-play denoiser easily. Extensive experiments on various benchmarks demonstrate the advantages of ReLLIE, comparing to the state-of-the-art methods.
Low-light image enhancement (LLIE) aims at improving the perception or interpretability of an image captured in an environment with poor illumination. Recent advances in this area are dominated by deep learning-based solutions, where many learning st rategies, network structures, loss functions, training data, etc. have been employed. In this paper, we provide a comprehensive survey to cover various aspects ranging from algorithm taxonomy to unsolved open issues. To examine the generalization of existing methods, we propose a large-scale low-light image and video dataset, in which the images and videos are taken by different mobile phones cameras under diverse illumination conditions. Besides, for the first time, we provide a unified online platform that covers many popular LLIE methods, of which the results can be produced through a user-friendly web interface. In addition to qualitative and quantitative evaluation of existing methods on publicly available and our proposed datasets, we also validate their performance in face detection in the dark. This survey together with the proposed dataset and online platform could serve as a reference source for future study and promote the development of this research field. The proposed platform and the collected methods, datasets, and evaluation metrics are publicly available and will be regularly updated at https://github.com/Li-Chongyi/Lighting-the-Darkness-in-the-Deep-Learning-Era-Open. Our low-light image and video dataset is also available.
The paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network. Our method trains a lightweight deep network, DCE-Net, to estimat e pixel-wise and high-order curves for dynamic range adjustment of a given image. The curve estimation is specially designed, considering pixel value range, monotonicity, and differentiability. Zero-DCE is appealing in its relaxed assumption on reference images, i.e., it does not require any paired or unpaired data during training. This is achieved through a set of carefully formulated non-reference loss functions, which implicitly measure the enhancement quality and drive the learning of the network. Our method is efficient as image enhancement can be achieved by an intuitive and simple nonlinear curve mapping. Despite its simplicity, we show that it generalizes well to diverse lighting conditions. Extensive experiments on various benchmarks demonstrate the advantages of our method over state-of-the-art methods qualitatively and quantitatively. Furthermore, the potential benefits of our Zero-DCE to face detection in the dark are discussed. Code and model will be available at https://github.com/Li-Chongyi/Zero-DCE.
188 - Jiang Hai , Zhu Xuan , Ren Yang 2021
Images captured in weak illumination conditions will seriously degrade the image quality. Solving a series of degradation of low-light images can effectively improve the visual quality of the image and the performance of high-level visual tasks. In t his paper, we propose a novel Real-low to Real-normal Network for low-light image enhancement, dubbed R2RNet, based on the Retinex theory, which includes three subnets: a Decom-Net, a Denoise-Net, and a Relight-Net. These three subnets are used for decomposing, denoising, and contrast enhancement, respectively. Unlike most previous methods trained on synthetic images, we collect the first Large-Scale Real-World paired low/normal-light images dataset (LSRW dataset) for training. Our method can properly improve the contrast and suppress noise simultaneously. Extensive experiments on publicly available datasets demonstrate that our method outperforms the existing state-of-the-art methods by a large margin both quantitatively and visually. And we also show that the performance of the high-level visual task (emph{i.e.} face detection) can be effectively improved by using the enhanced results obtained by our method in low-light conditions. Our codes and the LSRW dataset are available at: https://github.com/abcdef2000/R2RNet.
When capturing images in low-light conditions, the images often suffer from low visibility, which not only degrades the visual aesthetics of images, but also significantly degenerates the performance of many computer vision algorithms. In this paper, we propose a self-supervised low-light image enhancement framework (SID-NISM), which consists of two components, a Self-supervised Image Decomposition Network (SID-Net) and a Nonlinear Illumination Saturation Mapping function (NISM). As a self-supervised network, SID-Net could decompose the given low-light image into its reflectance, illumination and noise directly without any prior training or reference image, which distinguishes it from existing supervised-learning methods greatly. Then, the decomposed illumination map will be enhanced by NISM. Having the restored illumination map, the enhancement can be achieved accordingly. Experiments on several public challenging low-light image datasets reveal that the images enhanced by SID-NISM are more natural and have less unexpected artifacts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا