ﻻ يوجد ملخص باللغة العربية
Low-light image enhancement aims to improve an images visibility while keeping its visual naturalness. Different from existing methods, which tend to accomplish the enhancement task directly, we investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps. Inspired by the color image formulation (diffuse illumination color plus environment illumination color), we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color. To this end, we propose a novel Degradation-to-Refinement Generation Network (DRGN). Its distinctive features can be summarized as 1) A novel two-step generation network for degradation learning and content refinement. It is not only superior to one-step methods, but also is capable of synthesizing sufficient paired samples to benefit the model training; 2) A multi-resolution fusion network to represent the target information (degradation or contents) in a multi-scale cooperative manner, which is more effective to address the complex unmixing problems. Extensive experiments on both the enhancement task and the joint detection task have verified the effectiveness and efficiency of our proposed method, surpassing the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset. Our code is available at url{https://github.com/kuijiang0802/DRGN}
Low-light image enhancement (LLIE) is a pervasive yet challenging problem, since: 1) low-light measurements may vary due to different imaging conditions in practice; 2) images can be enlightened subjectively according to diverse preferences by each i
Low-light image enhancement (LLIE) aims at improving the perception or interpretability of an image captured in an environment with poor illumination. Recent advances in this area are dominated by deep learning-based solutions, where many learning st
The paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network. Our method trains a lightweight deep network, DCE-Net, to estimat
Images captured in weak illumination conditions will seriously degrade the image quality. Solving a series of degradation of low-light images can effectively improve the visual quality of the image and the performance of high-level visual tasks. In t
When capturing images in low-light conditions, the images often suffer from low visibility, which not only degrades the visual aesthetics of images, but also significantly degenerates the performance of many computer vision algorithms. In this paper,