ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematics and Consequences of Comet Nucleus Outgassing Torques

254   0   0.0 ( 0 )
 نشر من قبل David Jewitt
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Jewitt




اسأل ChatGPT حول البحث

Anisotropic outgassing from comets exerts a torque sufficient to rapidly change the angular momentum of the nucleus, potentially leading to rotational instability. Here, we use empirical measures of spin changes in a sample of comets to characterize the torques and to compare them with expectations from a simple model. Both the data and the model show that the characteristic spin-up timescale, $tau_s$, is a strong function of nucleus radius, $r_n$. Empirically, we find that the timescale for comets (most with perihelion 1 to 2 AU and eccentricity $sim$0.5) varies as $tau_s sim 100 r_n^{2}$, where $r_n$ is expressed in kilometers and $tau_s$ is in years. The fraction of the nucleus surface that is active varies as $f_A sim 0.1 r_n^{-2}$. We find that the median value of the dimensionless moment arm of the torque is $k_T$ = 0.007 (i.e. $sim$0.7% of the escaping momentum torques the nucleus), with weak ($<$3$sigma$) evidence for a size dependence $k_T sim 10^{-3} r_n^2$. Sub-kilometer nuclei have spin-up timescales comparable to their orbital periods, confirming that outgassing torques are quickly capable of driving small nuclei towards rotational disruption. Torque-induced rotational instability likely accounts for the paucity of sub-kilometer short-period cometary nuclei, and for the pre-perihelion destruction of sungrazing comets. Torques from sustained outgassing on small active asteroids can rival YORP torques, even for very small ($lesssim$1 g s$^{-1}$) mass loss rates. Finally, we highlight the important role played by observational biases in the measured distributions of $tau_s$, $f_A$ and $k_T$.

قيم البحث

اقرأ أيضاً

130 - Chunhua Qi 2014
We present high angular resolution Submillimeter Array observations ofthe outbursting Jupiter family comet 17P/Holmes on 2007 October 26-29, achieving a spatial resolution of 2.5, or ~3000 km at the comet distance. The observations resulted in detect ions of the rotational lines CO 3-2, HCN 4-3, H$^{13}$CN 4-3, CS 7-6, H$_2$CO 3$_{1,2}$-2$_{1,1}$, H$_2$S 2$_{2,0}$-2$_{1,1}$, and multiple CH$_3$OH lines, along with the associated dust continuum at 221 and 349 GHz. The continuum has a spectral index of 2.7$pm$0.3, slightly steeper than blackbody emission from large dust particles. From the imaging data, we identify two components in the molecular emission. One component is characterized by a relatively broad line width (~1 km s$^{-1}$ FWHM) exhibiting a symmetric outgassing pattern with respect to the nucleus position. The second component has a narrower line width (<0.5 km s$^{-1}$ FWHM) with the line center red-shifted by 0.1-0.2 km s$^{-1}$ (cometocentric frame), and shows a velocity shift across the nucleus position with the position angle gradually changing from 66 to 30 degrees within the four days of observations. We determine distinctly different CO/HCN ratios for each of the components. For the broad-line component we find CO/HCN <7, while in the narrow-line component, CO/HCN = 40$pm$5. We hypothesize that the narrow-line component originates from the ice grain halo found in near-nucleus photometry, believed to be created by sublimating recently released ice grains around the nucleus during the outburst. In this interpretation, the high CO/HCN ratio of this component reflects the more pristine volatile composition of nucleus material released in the outburst.
We present high resolution imaging observations of interstellar comet 2I/Borisov (formerly C/2019 Q4) obtained using the Hubble Space Telescope. Scattering from the comet is dominated by a coma of large particles (characteristic size 0.1 mm) ejected anisotropically. Convolution modeling of the coma surface brightness profile sets a robust limit to the spherical-equivalent nucleus radius r_n < 0.5 km (geometric albedo 0.04 assumed). We obtain an independent constraint based on the non-gravitational acceleration of the nucleus, finding r_n > 0.2 km (nucleus density 500 kg/m3 assumed). The profile and the non-gravitational constraints cannot be simultaneously satisfied if density < 25 kg/m3; the nucleus of comet Borisov cannot be a low density fractal assemblage of the type proposed elsewhere for the nucleus of 1I/Oumuamua. We show that the spin-up timescale to outgassing torques, even at the measured low production rates, is comparable to or shorter than the residence time in the Suns water sublimation zone. The spin angular momentum of the nucleus should be changed significantly during the current solar fly-by. Lastly, we find that the differential interstellar size distribution in the 0.5 mm to 100 m size range can be represented by power laws with indices < 4 and that interstellar bodies of 100 m size scale strike Earth every one to two hundred million years.
We present IRTF/SpeX and NEOWISE observations of the dynamically new comet C/2013 US$_{10}$ (Catalina), hereafter US10, from 5.8 au inbound, to near perihelion at 1.3 au, and back to 5.0 au outbound. We detect water ice in the coma of US10, assess an d monitor the physical properties of the ice as insolation varies with heliocentric distance, and investigate the relationship between water ice and CO$_{2}$. This set of measurements is unique in orbital coverage and can be used to infer the physical evolution of the ice and, potentially, the nucleus composition. We report (1) nearly identical near-infrared spectroscopic measurements of the coma at $-$5.8 au, $-$5.0 au, +3.9 au (where $<$0 au indicates pre-perihelion epochs), all presenting evidence of water-ice grains, (2) a dust-dominated coma at 1.3 au and 2.3 au and, (3) an increasing CO$_{2}$/$Afrho$ ratio from $-$4.9 au to 1.8 au. We propose that sublimation of the hyper-volatile CO$_{2}$ is responsible for dragging water-ice grains into the coma throughout the orbit. Once in the coma, the observability of the water-ice grains is controlled by the ice grain sublimation lifetime, which seems to require some small dust contaminant (i.e., non-pure ice grains). At |R$_{h}$|>=3.9 au, the ice grains are long-lived and may be unchanged since leaving the comet nucleus. We find the nucleus of comet US10 is made of, among other components, $sim$1-micron water-ice grains containing up to 1% refractory materials.
We collect observational evidence that supports the scheme of mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. The obliquity of the rotation axis of 67P causes strong seasonal variations. During perihelion the southern hemisphere is f our times more active than the north. Northern territories are widely covered by granular material that indicates back fall originating from the active south. Decimetre sized chunks contain water ice and their trajectories are influenced by an anti-solar force instigated by sublimation. OSIRIS observations suggest that up to 20 % of the particles directly return to the nucleus surface taking several hours of travel time. The back fall covered northern areas are active if illuminated but produce mainly water vapour. The decimetre chunks from the nucleus surface are too small to contain more volatile compounds such as CO 2 or CO. This causes a north-south dichotomy of the composition measurements in the coma. Active particles are trapped in the gravitational minimum of Hapi during northern winter. They are shock frozen and only reactivated when the comet approaches the sun after its aphelion passage. The insolation of the big cavity is enhanced by self-heating, i. e. reflection and IR radiation from the walls. This, together with the pristinity of the active back fall, explains the early observed activity of the Hapi region. Sobek may be a role model for the consolidated bottom of Hapi. Mass transfer in the case of 67P strongly influences the evolution of the nucleus and the interpretation of coma measurements.
We have used the Spitzer 22-um peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASAs Deep Impact Extended mission. The comet was observed on UT 2008 August 12 and 13, while the comet was 5.5 AU from the Sun. We obtained two 200-frame sets of photometric imaging over a 2.7-hour period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comets anti-velocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 +/- 0.20 indicates a small effective radius for the nucleus of 0.57 +/- 0.08 km and low geometric albedo 0.028 +/- 0.009 (1 sigma). With this nucleus size and a water production rate of 3 x 10^28 molecules s-1 at perihelion (AHearn et al. 1995) we estimate that ~100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ~5 AU (Lowry et al. 2001, Snodgrass et al. 2008) support our finding of a highly active nuclear surface. Compared to Deep Impacts first target, comet 9P/Tempel 1, Hartley 2s nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, it should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (~700 yrs) at its current rate of mass loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا