ترغب بنشر مسار تعليمي؟ اضغط هنا

The Luminosity Function of bright QSOs at z~4 and implications for the cosmic ionizing background

83   0   0.0 ( 0 )
 نشر من قبل Konstantina Boutsia
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on results by recent surveys, the number of bright quasars at redshifts z>3 is being constantly revised upwards. Current consensus is that at bright magnitudes ($M_{1450}le -27$) the number densities of such sources could have been underestimated by a factor of 30-40%. In the framework of the QUBRICS survey, we identified 58 bright QSOs at 3.6$le z le $4.2, with magnitudes $i_{psf}le$18, in an area of 12400$deg^{2}$. The uniqueness of our survey is underlined by the fact that it allows us, for the first time, to extend the sampled absolute magnitude range up to $M_{1450}= -29.5$. We derived a bright-end slope of $beta=-4.025$ and a space density at $<M_{1450}>=-28.75$ of 2.61$times 10^{-10} Mpc^{-3}$ comoving, after taking into account the estimated incompleteness of our observations. Taking into account the results of fainter surveys, AGN brighter than $M_{1450}=-23$ could produce at least half of the ionizing emissivity at z$sim$4. Considering a mean escape fraction of 0.7 for the QSO and AGN population, combined with a mean free path of 41.3 proper Mpc at $z=3.9$, we derive a photoionization rate of $Log(Gamma [s^{-1}])=-12.17^{+0.13}_{-0.07}$, produced by AGN at M$_{1450}<-18$, i.e. ~100% of the measured ionizing background at z~4.



قيم البحث

اقرأ أيضاً

Finding the sources responsible for the hydrogen reionization is one of the most pressing issues in cosmology. Bright QSOs are known to ionize their surrounding neighborhood, but they are too few to ensure the required HI ionizing background. A signi ficant contribution by faint AGNs, however, could solve the problem, as recently advocated on the basis of a relatively large space density of faint active nuclei at z>4. We have carried out an exploratory spectroscopic program to measure the HI ionizing emission of 16 faint AGNs spanning a broad U-I color interval, with I~21-23 and 3.6<z<4.2. These AGNs are three magnitudes fainter than the typical SDSS QSOs (M1450<~-26) which are known to ionize their surrounding IGM at z>~4. The LyC escape fraction has been detected with S/N ratio of ~10-120 and is between 44 and 100% for all the observed faint AGNs, with a mean value of 74% at 3.6<z<4.2 and -25.1<M1450<-23.3, in agreement with the value found in the literature for much brighter QSOs (M1450<~-26) at the same redshifts. The LyC escape fraction of our faint AGNs does not show any dependence on the absolute luminosities or on the observed U-I colors. Assuming that the LyC escape fraction remains close to ~75% down to M1450~-18, we find that the AGN population can provide between 16 and 73% (depending on the adopted luminosity function) of the whole ionizing UV background at z~4, measured through the Lyman forest. This contribution increases to 25-100% if other determinations of the ionizing UV background are adopted. Extrapolating these results to z~5-7, there are possible indications that bright QSOs and faint AGNs can provide a significant contribution to the reionization of the Universe, if their space density is high at M1450~-23.
127 - Eilat Glikman 2011
We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented in Glikman et al. (2010). We have observed an additional 43 candidates from our survey sa mple, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450A compared with measuring M1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M1450 for all the quasars, we fit a double-power-law to the binned QLF. Our best fit has a bright-end slope, {alpha} = 3.3pm0.2, and faint-end slope, {beta} = 1.6(+0.8/-0.6). Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1(+0.7/-1.9), approximately 1 - 1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the IGM at these redshifts.
One of the major challenges in observational cosmology is related to the redshift evolution of the average hydrogen ionization in the Universe. In order to probe the ionization level of the IGM and the ionization capabilities of bright QSOs at z=4, w e have selected a sample of 2508 QSOs from the SDSS survey (DR14) at 3.6<z<4.6 and -29.0<M1450<-26.0. Starting from UV/optical rest-frame spectra of the whole QSO sample, we estimate the escape fraction and free path individually for each of them. We calculate the Lyman Continuum (LyC) escape fraction as the flux ratio blue-ward (~900 A rest-frame) and red-ward (~930 A rest-frame) of the Lyman limit. We then obtain the probability distribution function (PDF) of the individual free paths of the QSOs in the sample and study its evolution in luminosity and redshift, comparing our results with the ones found in literature so far. We find a lower limit to the mean LyC escape fraction of 0.49, in agreement with the values obtained for both brighter and fainter sources at the same redshift. We show that the free paths of ionizing photons are characterized by a skewed distribution function peaked at low values, with an average of ~49-59 proper Mpc at z~4, after excluding possible associated absorbers. This value is larger than the one obtained at the same redshift by many authors in the literature using different techniques. Finally, we also find that the redshift evolution of this parameter results to be possibly milder than previously thought. Our new determination of the mean free path at z~4 implies that previous estimates of the HI photo-ionization rate Gamma_HI available in the literature should be corrected by a factor of 1.2-1.7. These results have important implications if extrapolated at the epoch of reionization.
125 - Eilat Glikman 2009
We have conducted a spectroscopic survey to find faint quasars (-26.0 < M_{1450} < -22.0) at redshifts z=3.8-5.2 in order to measure the faint end of the quasar luminosity function at these early times. Using available optical imaging data from porti ons of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg^2. Thirty candidates have R <= 23 mags. We conducted spectroscopic followup for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z <5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450A. Considering only our R <= 23 sample, the best-fit single power-law (Phi propto L^beta) gives a faint-end slope beta = -1.6+/-0.2. If we consider our larger, but highly incomplete sample going one magnitude fainter, we measure a steeper faint-end slope -2 < beta < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law luminosity function. Our best fit finds a bright-end slope, alpha = -2.4+/-0.2, and faint-end slope, beta = -2.3+/-0.2, without a well-constrained break luminosity. This is effectively a single power-law, with beta = -2.7+/-0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts.
We obtain a sample of 87 radio-loud QSOs in the redshift range 3.6<z<4.4 by cross-correlating sources in the FIRST radio survey S{1.4GHz} > 1 mJy with star-like objects having r <20.2 in SDSS Data Release 7. Of these 87 QSOs, 80 are spectroscopically classified in previous work (mainly SDSS), and form the training set for a search for additional such sources. We apply our selection to 2,916 FIRST-DR7 pairs and find 15 likely candidates. Seven of these are confirmed as high-redshift quasars, bringing the total to 87. The candidates were selected using a neural-network, which yields 97% completeness (fraction of actual high-z QSOs selected as such) and an efficiency (fraction of candidates which are high-z QSOs) in the range of 47 to 60%. We use this sample to estimate the binned optical luminosity function of radio-loud QSOs at $zsim 4$, and also the LF of the total QSO population and its comoving density. Our results suggest that the radio-loud fraction (RLF) at high z is similar to that at low-z and that other authors may be underestimating the fraction at high-z. Finally, we determine the slope of the optical luminosity function and obtain results consistent with previous studies of radio-loud QSOs and of the whole population of QSOs. The evolution of the luminosity function with redshift was for many years interpreted as a flattening of the bright end slope, but has recently been re-interpreted as strong evolution of the break luminosity for high-z QSOs, and our results, for the radio-loud population, are consistent with this.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا