ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast radio burst detection in the presence of coloured noise

66   0   0.0 ( 0 )
 نشر من قبل Chunfeng Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate the impact of correlated noise on fast radio burst (FRB) searching. We found that 1) the correlated noise significantly increases the false alarm probability; 2) the signal-to-noise ratios (S/N) of the false positives become higher; 3) the correlated noise also affects the pulse width distribution of false positives, and there will be more false positives with wider pulse width. We use 55-hour observation for M82 galaxy carried out at Nanshan 26m radio telescope to demonstrate the application of the correlated noise modelling. The number of candidates and parameter distribution of the false positives can be reproduced with the modelling of correlated noise. We will also discuss a low S/N candidate detected in the observation, for which we demonstrate the method to evaluate the false alarm probability in the presence of correlated noise.Possible origins of the candidate are discussed, where two possible pictures, an M82-harbored giant pulse and a cosmological FRB, are both compatible with the observation.



قيم البحث

اقرأ أيضاً

We report on the discovery of eight repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 103.5 to 1281 pc cm$^{-3}$. They disp lay varying degrees of activity: six sources were detected twice, another three times, and one ten times. These eight repeating FRBs likely represent the bright and/or high-rate end of a distribution of infrequently repeating sources. For all sources, we determine sky coordinates with uncertainties of $sim$10$^prime$. FRB 180916.J0158+65 has a burst-averaged DM = $349.2 pm 0.3$ pc cm$^{-3}$ and a low DM excess over the modelled Galactic maximum (as low as $sim$20 pc cm$^{-3}$); this source also has a Faraday rotation measure (RM) of $-114.6 pm 0.6$ rad m$^{-2}$, much lower than the RM measured for FRB 121102. FRB 181030.J1054+73 has the lowest DM for a repeater, $103.5 pm 0.3$ pc cm$^{-3}$, with a DM excess of $sim$ 70 pc cm$^{-3}$. Both sources are interesting targets for multi-wavelength follow-up due to their apparent proximity. The DM distribution of our repeater sample is statistically indistinguishable from that of the first 12 CHIME/FRB sources that have not repeated. We find, with 4$sigma$ significance, that repeater bursts are generally wider than those of CHIME/FRB bursts that have not repeated, suggesting different emission mechanisms. Our repeater events show complex morphologies that are reminiscent of the first two discovered repeating FRBs. The repetitive behavior of these sources will enable interferometric localizations and subsequent host galaxy identifications.
We report the detection of a single burst from the first-discovered repeating Fast Radio Burst source, FRB 121102, with CHIME/FRB, which operates in the frequency band 400-800 MHz. The detected burst occurred on 2018 November 19 and its emission exte nds down to at least 600 MHz, the lowest frequency detection of this source yet. The burst, detected with a significance of 23.7$sigma$, has fluence 12$pm$3 Jy ms and shows complex time and frequency morphology. The 34 ms width of the burst is the largest seen for this object at any frequency. We find evidence of sub-burst structure that drifts downward in frequency at a rate of -3.9$pm$0.2 MHz ms$^{-1}$. Our best fit tentatively suggests a dispersion measure of 563.6$pm$0.5 pc cm$^{-3}$, which is ${approx}$1% higher than previously measured values. We set an upper limit on the scattering time at 500 MHz of 9.6 ms, which is consistent with expectations from the extrapolation from higher frequency data. We have exposure to the position of FRB 121102 for a total of 11.3 hrs within the FWHM of the synthesized beams at 600 MHz from 2018 July 25 to 2019 February 25. We estimate on the basis of this single event an average burst rate for FRB 121102 of 0.1-10 per day in the 400-800 MHz band for a median fluence threshold of 7 Jy ms in the stated time interval.
Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i .e. integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events. Here we report the detection of ten additional bursts from the direction of FRB121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or shorter. While there may be multiple physical origins for the population of fast radio bursts, the repeat bursts with high dispersion measure and variable spectra specifically seen from FRB121102 support models that propose an origin in a young, highly magnetised, extragalactic neutron star.
58 - S.-B. Zhang , G. Hobbs , S. Dai 2019
We report the discovery of a new fast radio burst (FRB), FRB~010312, in archival data from a 1.4,GHz survey of the Magellanic Clouds using the multibeam receiver on the Parkes 64,m-diameter radio telescope. These data sets include the Lorimer burst ( FRB~010724), which it pre-dates and which we also re-detect. The new burst has a much higher dispersion measure of 1187,cm$^{-3}$pc. The burst is one of the broadest found to date, the second earliest FRB known, and the ninth FRB discovered with a dispersion measure larger than 1000,cm$^{-3},$pc. Our discovery indicates that there are likely to be more burst events still to be found in the existing Parkes data archive.
We report the detection of an ultra-bright fast radio burst (FRB) from a modest, 3.4-day pilot survey with the Australian Square Kilometre Array Pathfinder. The survey was conducted in a wide-field flys-eye configuration using the phased-array-feed t echnology deployed on the array to instantaneously observe an effective area of $160$ deg$^2$, and achieve an exposure totaling $13200$ deg$^2$ hr. We constrain the position of FRB 170107 to a region $8times8$ in size (90% containment) and its fluence to be $58pm6$ Jy ms. The spectrum of the burst shows a sharp cutoff above $1400$ MHz, which could be either due to scintillation or an intrinsic feature of the burst. This confirms the existence of an ultra-bright ($>20$ Jy ms) population of FRBs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا