ترغب بنشر مسار تعليمي؟ اضغط هنا

Reverse Psychology in Trust-Aware Human-Robot Interaction

76   0   0.0 ( 0 )
 نشر من قبل Yaohui Guo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To facilitate effective human-robot interaction (HRI), trust-aware HRI has been proposed, wherein the robotic agent explicitly considers the humans trust during its planning and decision making. The success of trust-aware HRI depends on the specification of a trust dynamics model and a trust-behavior model. In this study, we proposed one novel trust-behavior model, namely the reverse psychology model, and compared it against the commonly used disuse model. We examined how the two models affect the robots optimal policy and the human-robot team performance. Results indicate that the robot will deliberately manipulate the humans trust under the reverse psychology model. To correct this manipulative behavior, we proposed a trust-seeking reward function that facilitates trust establishment without significantly sacrificing the team performance.



قيم البحث

اقرأ أيضاً

Trust is a critical issue in Human Robot Interactions as it is the core of human desire to accept and use a non human agent. Theory of Mind has been defined as the ability to understand the beliefs and intentions of others that may differ from ones o wn. Evidences in psychology and HRI suggest that trust and Theory of Mind are interconnected and interdependent concepts, as the decision to trust another agent must depend on our own representation of this entitys actions, beliefs and intentions. However, very few works take Theory of Mind of the robot into consideration while studying trust in HRI. In this paper, we investigated whether the exposure to the Theory of Mind abilities of a robot could affect humans trust towards the robot. To this end, participants played a Price Game with a humanoid robot that was presented having either low level Theory of Mind or high level Theory of Mind. Specifically, the participants were asked to accept the price evaluations on common objects presented by the robot. The willingness of the participants to change their own price judgement of the objects (i.e., accept the price the robot suggested) was used as the main measurement of the trust towards the robot. Our experimental results showed that robots possessing a high level of Theory of Mind abilities were trusted more than the robots presented with low level Theory of Mind skills.
Robot capabilities are maturing across domains, from self-driving cars, to bipeds and drones. As a result, robots will soon no longer be confined to safety-controlled industrial settings; instead, they will directly interact with the general public. The growing field of Human-Robot Interaction (HRI) studies various aspects of this scenario - from social norms to joint action to human-robot teams and more. Researchers in HRI have made great strides in developing models, methods, and algorithms for robots acting with and around humans, but these computational HRI models and algorithms generally do not come with formal guarantees and constraints on their operation. To enable human-interactive robots to move from the lab to real-world deployments, we must address this gap. This article provides an overview of verification, validation and synthesis techniques used to create demonstrably trustworthy systems, describes several HRI domains that could benefit from such techniques, and provides a roadmap for the challenges and the research needed to create formalized and guaranteed human-robot interaction.
With the primary objective of human-robot interaction being to support humans goals, there exists a need to formally synthesize robot controllers that can provide the desired service. Synthesis techniques have the benefit of providing formal guarante es for specification satisfaction. There is potential to apply these techniques for devising robot controllers whose specifications are coupled with human needs. This paper explores the use of formal methods to construct human-aware robot controllers to support the productivity requirements of humans. We tackle these types of scenarios via human workload-informed models and reactive synthesis. This strategy allows us to synthesize controllers that fulfill formal specifications that are expressed as linear temporal logic formulas. We present a case study in which we reason about a work delivery and pickup task such that the robot increases worker productivity, but not stress induced by high work backlog. We demonstrate our controller using the Toyota HSR, a mobile manipulator robot. The results demonstrate the realization of a robust robot controller that is guaranteed to properly reason and react in collaborative tasks with human partners.
This paper presents a human-robot trust integrated task allocation and motion planning framework for multi-robot systems (MRS) in performing a set of tasks concurrently. A set of task specifications in parallel are conjuncted with MRS to synthesize a task allocation automaton. Each transition of the task allocation automaton is associated with the total trust value of human in corresponding robots. Here, the human-robot trust model is constructed with a dynamic Bayesian network (DBN) by considering individual robot performance, safety coefficient, human cognitive workload and overall evaluation of task allocation. Hence, a task allocation path with maximum encoded human-robot trust can be searched based on the current trust value of each robot in the task allocation automaton. Symbolic motion planning (SMP) is implemented for each robot after they obtain the sequence of actions. The task allocation path can be intermittently updated with this DBN based trust model. The overall strategy is demonstrated by a simulation with 5 robots and 3 parallel subtask automata.
In this paper, we present an approach for robot learning of social affordance from human activity videos. We consider the problem in the context of human-robot interaction: Our approach learns structural representations of human-human (and human-obje ct-human) interactions, describing how body-parts of each agent move with respect to each other and what spatial relations they should maintain to complete each sub-event (i.e., sub-goal). This enables the robot to infer its own movement in reaction to the human body motion, allowing it to naturally replicate such interactions. We introduce the representation of social affordance and propose a generative model for its weakly supervised learning from human demonstration videos. Our approach discovers critical steps (i.e., latent sub-events) in an interaction and the typical motion associated with them, learning what body-parts should be involved and how. The experimental results demonstrate that our Markov Chain Monte Carlo (MCMC) based learning algorithm automatically discovers semantically meaningful interactive affordance from RGB-D videos, which allows us to generate appropriate full body motion for an agent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا