ﻻ يوجد ملخص باللغة العربية
A {em special four-cycle } $F$ in a triple system consists of four triples {em inducing } a $C_4$. This means that $F$ has four special vertices $v_1,v_2,v_3,v_4$ and four triples in the form $w_iv_iv_{i+1}$ (indices are understood $pmod 4$) where the $w_j$s are not necessarily distinct but disjoint from ${v_1,v_2,v_3,v_4}$. There are seven non-isomorphic special four-cycles, their family is denoted by $cal{F}$. Our main result implies that the Turan number $text{ex}(n,{cal{F}})=Theta(n^{3/2})$. In fact, we prove more, $text{ex}(n,{F_1,F_2,F_3})=Theta(n^{3/2})$, where the $F_i$-s are specific members of $cal{F}$. This extends previous bounds for the Turan number of triple systems containing no Berge four cycles. We also study $text{ex}(n,{cal{A}})$ for all ${cal{A}}subseteq {cal{F}}$. For 16 choices of $cal{A}$ we show that $text{ex}(n,{cal{A}})=Theta(n^{3/2})$, for 92 choices of $cal{A}$ we find that $text{ex}(n,{cal{A}})=Theta(n^2)$ and the other 18 cases remain unsolved.
A Berge-$K_4$ in a triple system is a configuration with four vertices $v_1,v_2,v_3,v_4$ and six distinct triples ${e_{ij}: 1le i< j le 4}$ such that ${v_i,v_j}subset e_{ij}$ for every $1le i<jle 4$. We denote by $cal{B}$ the set of Berge-$K_4$ confi
In this paper we study Turan and Ramsey numbers in linear triple systems, defined as $3$-uniform hypergraphs in which any two triples intersect in at most one vertex. A famous result of Ruzsa and Szemeredi is that for any fixed $c>0$ and large enou
The Turan number of a graph $H$, denoted by $ex(n,H)$, is the maximum number of edges in any graph on $n$ vertices which does not contain $H$ as a subgraph. Let $P_{k}$ denote the path on $k$ vertices and let $mP_{k}$ denote $m$ disjoint copies of $P
Given $r$-uniform hypergraphs $G$ and $H$ the Turan number $rm ex(G, H)$ is the maximum number of edges in an $H$-free subgraph of $G$. We study the typical value of $rm ex(G, H)$ when $G=G_{n,p}^{(r)}$, the ErdH{o}s-Renyi random $r$-uniform hypergra
Let the bipartite Turan number $ex(m,n,H)$ of a graph $H$ be the maximum number of edges in an $H$-free bipartite graph with two parts of sizes $m$ and $n$, respectively. In this paper, we prove that $ex(m,n,C_{2t})=(t-1)n+m-t+1$ for any positive int