ترغب بنشر مسار تعليمي؟ اضغط هنا

NGC 6611 601: A hot pre-main sequence spectroscopic binary containing a centrifugal magnetosphere host star

80   0   0.0 ( 0 )
 نشر من قبل Matthew Shultz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

W 601 (NGC 6611 601) is one of the handful of known magnetic Herbig Ae/Be stars. We report the analysis of a large dataset of high-resolution spectropolarimetry. The star is a previously unreported spectroscopic binary, consisting of 2 B2 stars with a mass ratio of 1.8, masses of 12 M$_odot$ and 6.2 $M_odot$, in an eccentric 110-day orbit. The magnetic field belongs to the secondary, W 601 B. The H$alpha$ emission is consistent with an origin in W 601 Bs centrifugal magnetosphere; the star is therefore not a classical Herbig Be star in the sense that its emission is not formed in an accretion disk. However, the low value of $log{g} = 3.8$ determined via spectroscopic analysis, and the stars membership in the young NGC 6611 cluster, are most consistent with it being on the pre-main sequence. The rotational period inferred from the variability of the H$alpha$ line and the longitudinal magnetic field $langle B_z rangle$ is 1.13 d. Modelling of Stokes $V$ and $langle B_z rangle$ indicates a surface dipolar magnetic field $B_{rm d}$ between 6 and $11$ kG. With its strong emission, rapid rotation, and strong surface magnetic field, W 601 B is likely a precursor to H$alpha$-bright magnetic B-type stars such as $sigma$ Ori E. By contrast, the primary is an apparently non-magnetic ($B_{rm d} < 300$ G) pre-main sequence early B-type star. In accordance with expectations from magnetic braking, the non-magnetic primary is apparently more rapidly rotating than the magnetic star.



قيم البحث

اقرأ أيضاً

We present Mon-735, a detached double-lined eclipsing binary (EB) member of the $sim$3 Myr old NGC 2264 star forming region, detected by Spitzer. We simultaneously model the Spitzer light curves, follow-up Keck/HIRES radial velocities, and the system s spectral energy distribution to determine self-consistent masses, radii and effective temperatures for both stars. We find that Mon-735 comprises two pre-main sequence M dwarfs with component masses of $M = 0.2918 pm 0.0099$ and $0.2661 pm 0.0095$ $rm{M}_{odot}$, radii of $R = 0.762 pm 0.022$ and $0.748 pm 0.023$ $rm{R}_{odot}$, and effective temperatures of $T_{rm eff} = 3260 pm 73$ and $3213 pm 73$ $rm{K}$. The two stars travel on circular orbits around their common centre of mass in $P = 1.9751388 pm 0.0000050$ days. We compare our results for Mon-735, along with another EB in NGC 2264 (CoRoT 223992193), to the predictions of five stellar evolution models. These suggest that the lower mass EB system Mon-735 is older than CoRoT 223992193 in the mass-radius diagram (MRD) and, to a lesser extent, in the Hertzsprung-Russell diagram (HRD). The MRD ages of Mon-735 and CoRoT 223992193 are $sim$7-9 and 4-6 Myr, respectively, with the two components in each EB system possessing consistent ages.
We present results from long-term optical photometric and spectroscopic observations of 5 pre-main sequence stars, located in the vicinity of the bight nebula NGC 7129. We obtained UBVRI photometric observations in the field centered on the star V391 Cep, north-west of the bright nebula NGC 7129. Our multicolor CCD observations spanned the period from February 1998 to November 2016. At the time of our photometric monitoring, a total of thirteen medium-resolution optical spectra of the stars were obtained. The results from our photometric study show that all stars exhibit strong variability in all optical passbands. Long-term light curves of the five stars indicate the typical of classical T Tauri stars variations in brightness with large amplitudes. We did not find any reliable periodicity in the brightness variations of all five stars. The results from spectral observations showed that all studied stars can be classified as a classical T Tauri stars with reach emission line spectra and strong variability in the profiles and intensity of emission lines.
The young system RX J0529.3+1210 was initially identified as a single-lined spectroscopic binary. Using high-resolution infrared spectra, acquired with NIRSPEC on Keck II, we measured radial velocities for the secondary. The method of using the infra red regime to convert single-lined spectra into double-lined spectra, and derive the mass ratio for the binary system, has been successfully used for a number of young, low-mass binaries. For RX J0529.3+1210, a long- period(462 days) and highly eccentric(0.88) binary system, we determine the mass ratio to be 0.78+/-0.05 using the infrared double-lined velocity data alone, and 0.73+/-0.23 combining visible light and infrared data in a full orbital solution. The large uncertainty in the latter is the result of the sparse sampling in the infrared and the high eccentricity: the stars do not have a large velocity separation during most of their ~1.3 year orbit. A mass ratio close to unity, consistent with the high end of the one sigma uncertainty for this mass ratio value, is inconsistent with the lack of a visible light detection of the secondary component. We outline several scenarios for a color difference in the two stars, such as one heavily spotted component, higher order multiplicity, or a unique evolutionary stage, favoring detection of only the primary star in visible light, even in a mass ratio ~1 system. However, the evidence points to a lower ratio. Although RX J0529.3+1210 exhibits no excess at near-infrared wavelengths, a small 24 micron excess is detected, consistent with circumbinary dust. The properties of this binary and its membership in Lambda Ori versus a new nearby stellar moving group at ~90 pc are discussed. We speculate on the origin of this unusual system and on the impact of such high eccentricity on the potential for planet formation.
242 - Simon J. Murphy 2012
We report the discovery of two young M-dwarfs, RX J0942.7-7726 (M1) and 2MASS J09424157-7727130 (M4.5), that were found only 42 arcsec apart in a survey for pre-main sequence stars surrounding the open cluster eta Chamaeleontis. Both stars have congr uent proper motions and near-infrared photometry. Medium-resolution spectroscopy reveals that they are coeval (age 8-12 Myr), codistant (100-150 pc) and thus almost certainly form a true wide binary with a projected separation of 4000-6000 AU. The system appears too old and dynamically fragile to have originated in eta Cha and a traceback analysis argues for its birth in or near the Scorpius-Centaurus OB Association. RX J0942.7-7726AB joins a growing group of wide binaries kinematically linked to Sco-Cen, suggesting that such fragile systems can survive the turbulent environment of their natal molecular clouds while still being dispersed with large velocities. Conversely, the small radial velocity difference between the stars (2.7 pm 1.0 km/s) could mean the system is unbound, a result of the coincidental ejection of two single stars with similar velocity vectors from the OB association early in its evolution.
We present results of multi-epoch (fourteen nights during 2007-2010) $V$-band photometry of the cluster NGC 1893 region to identify photometric variable stars in the cluster. The study identified a total of 53 stars showing photometric variability. T he members associated with the region are identified on the basis of spectral energy distribution, $J-H/H-K$ two colour diagram and $V/V-I$ colour-magnitude diagram. The ages and masses of the majority of pre-main-sequence sources are found to be $lesssim$ 5 Myr and in the range 0.5 $lesssim$ $M/M_{odot}$ $lesssim$ 4, respectively. These pre-main-sequence sources hence could be T Tauri stars. We also determined the physical parameters like disk mass and accretion rate from the spectral energy distribution of these T Tauri stars. The periods of majority of the T Tauri stars range from 0.1 to 20 day. The brightness of Classical T Tauri stars is found to vary with larger amplitude in comparison to Weak line T Tauri stars. It is found that the amplitude decreases with increase in mass, which could be due to the dispersal of disks of massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا