ﻻ يوجد ملخص باللغة العربية
An analysis of the sunspot observations made by Hevelius during 1642-1645 is presented. These records are the only systematic sunspot observations just before the Maunder Minimum. We have studied different phenomena meticulously recorded by Hevelius after translating the original Latin texts. We re-evaluate the observations of sunspot groups by Hevelius during this period and obtain an average value 7% greater than that calculated from his observations given in the current group database. Furthermore, the average of the active day fraction obtained in this work from Hevelius records previous to the Maunder Minimum is significantly greater than the solar activity level obtained from Hevelius sunspot observations made during the Maunder Minimum (70% vs. 30%). We also present the butterfly diagram obtained from the sunspot positions recorded by Hevelius for the period 1642-1645. It can be seen that no hemispheric asymmetry exists during this interval, in contrast with the Maunder Minimum. Hevelius noted a ~3-month period that appeared to lack sunspots in early 1645 that gave the first hint of the impending Maunder Minimum. Recent studies claim that the Maunder Minimum was not a grand minimum period speculating that astronomers of that time, due to the Aristotelian ideas, did not record all sunspots that they observed, producing thus an underestimation of the solar activity level. However, we show the good quality of the sunspot records made by Hevelius indicates that his reports of sunspots were true to the observations.
Maunder Minimum forms an archetype for the Grand minima, and detailed knowledge of its temporal development has important consequences for the solar dynamo theory dealing with long-term solar activity evolution. Here we reconsider the current paradig
The solar activity during the Maunder Minimum (MM; 1645 -- 1715) has been considered significantly different from the one captured in modern observations, in terms of sunspot group number and sunspot positions, whereas its actual amplitudes and distr
The sunspot groups have been observed since 1610 and their numbers have been used for evaluating the amplitude of solar activity. Daniel Mogling recorded his sunspot observations for more than 100 days in 1626 - 1629 and formed a significant dataset
A revision is presented of the sunspot observations made by Charles Malapert from 1618 to 1626, studying several documentary sources that include those observations. The revised accounting of the group numbers recorded by Malapert for that period sho
In addition to regular Schwabe cycles (~ 11 years), solar activity also shows longer periods of enhanced or reduced activity. Of these, reconstructions of the Dalton Minimum provide controversial sunspot group numbers and limited sunspot positions, p