ﻻ يوجد ملخص باللغة العربية
Two novel nonlinear mode coupling processes for reversed shear Alfven eigenmode (RSAE) nonlinear saturation are proposed and investigated. In the first process, RSAE nonlinearly couples to a co-propagating toroidal Alfven eigenmode (TAE) with the same toroidal and poloidal mode numbers, and generates a geodesic acoustic mode (GAM). In the second process, RSAE couples to a counter-propagating TAE and generates an ion acoustic wave quasi-mode (IAW). The condition for the two processes to occur is favored during current ramp. Both processes contribute to effectively saturate the Alfvenic instabilities, as well as nonlinearly transfer of energy from energetic fusion alpha particles to fuel ions in burning plasmas.
Hybrid MHD-gyrokinetic code simulations are used to investigate the dynamics of frequency sweeping reversed shear Alfven eigenmode (RSAE) strongly driven by energetic particles (EPs) during plasma current ramp-up in a conventional tokamak configurati
General nonlinear equations describing reversed shear Alfven eigenmode (RSAE) self-modulation via zero frequency zonal structure (ZFZS) generation are derived using nonlinear gyrokinetic theory, which are then applied to study the spontaneous ZFZS ex
Nonlinear saturation of toroidal Alfven eigenmode (TAE) via ion induced scatterings is investigated in the short-wavelength gyrokinetic regime. It is found that the nonlinear evolution depends on the thermal ion b{eta} value. Here, b{eta} is the plas
This paper presents a dedicated study of plasma-antenna (PA) coupling with the Alfven Eigenmode Active Diagnostic (AEAD) in JET. Stable AEs and their resonant frequencies f, damping rates $gamma$ < 0, and toroidal mode numbers n are measured for vari
Alfven Eigenmodes (AE) can be destabilized during ITER discharges driven by neutral beam injection (NBI) energetic particles (EP) and alpha particles. The aim of the present study is to analyze the AE stability of different ITER operation scenarios c