ﻻ يوجد ملخص باللغة العربية
Cell proliferation, apoptosis, and myosin-dependent contraction can generate elastic stress and strain in living tissues, which may be dissipated by tissue rearrangement through cell topological transition and cytoskeletal reorganization. The present work demonstrates significant nonlinear effects in macroscopic tissue mechanics arising from the competition between force-generating and dissipating processes. We develop a mathematical model to describe the coupled dynamics of tissue activities and mechanics in the nonlinear regime. The model exhibits multi-timescale behavior when the timescale of rearrangement is much shorter than that of growth and constriction. Under this condition, tissue behaves like an active viscoelastic solid at the shorter timescale and like an active viscous fluid at the longer timescale. The accumulated prestrain due to growth and constriction can regulate its viscosity. We solve the full nonlinear system considering the local growth rate coupled with a chemical gradient within a 2D radially symmetric tissue region. We find that the elastic properties and rearrangement rate can regulate tissue size as a higher-order effect due to advection in tissue flow. Furthermore, we show that tissue mechanics nonlinear effects can increase tissue size control sensitivity via mechanical feedback mechanisms.
We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model
In recent years, it has been shown that Berry curvature monopoles and dipoles play essential roles in the anomalous Hall effect and the nonlinear Hall effect respectively. In this work, we demonstrate that Berry curvature multipoles (the higher momen
In silico models of cardiac electromechanics couple together mathematical models describing different physics. One instance is represented by the model describing the generation of active force, coupled with the one of tissue mechanics. For the numer
Monolayers of anisotropic cells exhibit long-ranged orientational order and topological defects. During the development of organisms, orientational order often influences morphogenetic events. However, the linkage between the mechanics of cell monola
We have developed a method to systematically compute the form of Rashba- and Dresselhaus-like contributions to the spin Hamiltonian of heterostructures to an arbitrary order in the wavevector k. This is achieved by using the double group representati