ﻻ يوجد ملخص باللغة العربية
We study the pion and kaon properties in nuclear medium at nonvanishing temperature and baryon density as well as in the presence of magnetic field in the Nambu--Jona-Lasinio (NJL) model with the help of the proper-time regularization scheme, simulating a confinement. The density dependent of the quark masses are obtained from the quark-meson coupling (QMC) model in the symmetric nuclear matter at the quark level. We analyze the quark condensate, dynamical mass, pion and kaon masses, pion- and kaon-quark coupling constants as well as wave function renormalization factors for those mesons of finite temperature and in the presence of magnetic field for different baryon densities. We find the chiral condensate for the up quark suppresses with increasing temperature and baryon density and enhances under the presence of magnetic field. Interestingly, we find that the wave function renormalization for the pion and kaon increases with respect to the temperature and decreases as the baryon density increases.
The lowest dimensional gluon condensate $G_2$ is analysed at finite temperature and chemical potential using a bottom/up holographic model of QCD. Starting from the free energy of the model, pressure, entropy and quark density are obtained. Moreover,
We study two $1/N_c$ effects on the meson spectra by using the AdS/CFT correspondence where the $1/N_c$ corrections from the chiral condensate and the quark density are controlled by the gravitational backreaction of the massive scalar field and U(1)
It is shown that the spin polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasinio-type model as a low energy effective theory of quantum chromodyn
We investigate the effects of pseudoscalar-photon mixing on electromagnetic radiation in the presence of correlated extragalactic magnetic fields. We model the Universe as a collection of magnetic domains and study the propagation of radiation throug
We show that the nonlocal two-flavor Nambu--Jona-Lasinio model predicts the enhancement of both chiral and axial symmetry breaking as the chiral imbalance of hot QCD matter, regulated by a chiral chemical potential $mu_5$, increases. The two crossove