ﻻ يوجد ملخص باللغة العربية
Traditional statistical retrieval models often treat each document as a whole. In many cases, however, a document is relevant to a query only because a small part of it contain the targeted information. In this work, we propose a neural passage model (NPM) that uses passage-level information to improve the performance of ad-hoc retrieval. Instead of using a single window to extract passages, our model automatically learns to weight passages with different granularities in the training process. We show that the passage-based document ranking paradigm from previous studies can be directly derived from our neural framework. Also, our experiments on a TREC collection showed that the NPM can significantly outperform the existing passage-based retrieval models.
The ad-hoc retrieval task is to rank related documents given a query and a document collection. A series of deep learning based approaches have been proposed to solve such problem and gained lots of attention. However, we argue that they are inherent
Ranking models are the main components of information retrieval systems. Several approaches to ranking are based on traditional machine learning algorithms using a set of hand-crafted features. Recently, researchers have leveraged deep learning model
Designing pre-training objectives that more closely resemble the downstream tasks for pre-trained language models can lead to better performance at the fine-tuning stage, especially in the ad-hoc retrieval area. Existing pre-training approaches tailo
Our work aimed at experimentally assessing the benefits of model ensembling within the context of neural methods for passage reranking. Starting from relatively standard neural models, we use a previous technique named Fast Geometric Ensembling to ge
Product quantization (PQ) is a widely used technique for ad-hoc retrieval. Recent studies propose supervised PQ, where the embedding and quantization models can be jointly trained with supervised learning. However, there is a lack of appropriate form