ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Perturbation Theory in Inflation

307   0   0.0 ( 0 )
 نشر من قبل Vicharit Yingcharoenrat
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inflationary perturbations are approximately Gaussian and deviations from Gaussianity are usually calculated using in-in perturbation theory. This method, however, fails for unlikely events on the tail of the probability distribution: in this regime non-Gaussianities are important and perturbation theory breaks down for $|zeta| gtrsim |f_{rm scriptscriptstyle NL}|^{-1}$. In this paper we show that this regime is amenable to a semiclassical treatment, $hbar to 0$. In this limit the wavefunction of the Universe can be calculated in saddle-point, corresponding to a resummation of all the tree-level Witten diagrams. The saddle can be found by solving numerically the classical (Euclidean) non-linear equations of motion, with prescribed boundary conditions. We apply these ideas to a model with an inflaton self-interaction $propto lambda dotzeta^4$. Numerical and analytical methods show that the tail of the probability distribution of $zeta$ goes as $exp(-lambda^{-1/4}zeta^{3/2})$, with a clear non-perturbative dependence on the coupling. Our results are relevant for the calculation of the abundance of primordial black holes.

قيم البحث

اقرأ أيضاً

We develop an effective-field-theory (EFT) framework for inflation with various symmetry breaking pattern. As a prototype, we formulate anisotropic inflation from the perspective of EFT and construct an effective action of the Nambu-Goldstone bosons for the broken time translation and rotation symmetries. We also calculate the statistical anisotropy in the scalar two-point correlation function for concise examples of the effective action.
We develop sequestered inflation models, where inflation occurs along flat directions in supergravity models derived from type IIB string theory. It is compactified on a ${mathbb{T}^6 over mathbb{Z}_2 times mathbb{Z}_2}$ orientifold with generalized fluxes and O3/O7-planes. At Step I, we use flux potentials which 1) satisfy tadpole cancellation conditions and 2) have supersymmetric Minkowski vacua with flat direction(s). The 7 moduli are split into heavy and massless Goldstone multiplets. At Step II we add a nilpotent multiplet and uplift the flat direction(s) of the type IIB string theory to phenomenological inflationary plateau potentials: $alpha$-attractors with 7 discrete values $3alpha = 1, 2, 3, ..., 7$. Their cosmological predictions are determined by the hyperbolic geometry inherited from string theory. The masses of the heavy fields and the volume of the extra dimensions change during inflation, but this does not affect the inflationary dynamics.
In-In perturbation theory is a vital tool for cosmology and nonequilibrium physics. Here, we reconcile an apparent conflict between two of its important aspects with particular relevance to De Sitter/inflationary contexts: (i) the need to slightly de form unitary time evolution with an i*epsilon prescription that projects the free (Bunch-Davies) vacuum onto the interacting vacuum and renders vertex integrals well-defined, and (ii) Weinbergs nested commutator reformulation of in-in perturbation theory which makes manifest the constraints of causality within expectation values of local operators, assuming exact unitarity. We show that a modified i*epsilon prescription maintains the exact unitarity on which the derivation of (ii) rests, while nontrivially agreeing with (i) to all orders of perturbation theory.
We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial dif feomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.
We study cosmological inflation within a recently proposed framework of perturbative moduli stabilisation in type IIB/F theory compactifications on Calabi-Yau threefolds. The stabilisation mechanism utilises three stacks of magnetised 7-branes and re lies on perturbative corrections to the Kahler potential that grow logarithmically in the transverse sizes of co-dimension two due to local tadpoles of closed string states in the bulk. The inflaton is the Kahler modulus associated with the internal compactification volume that starts rolling down the scalar potential from an initial condition around its maximum. Although the parameter space allows moduli stabilisation in de Sitter space, the resulting number of e-foldings is too low. An extra uplifting source of the vacuum energy is then required to achieve phenomenologically viable inflation and a positive (although tiny) vacuum energy at the minimum. Here we use, as an example, a new Fayet-Iliopoulos term proposed recently in supergravity that can be written for a non R-symmetry U(1) and is gauge invariant at the Lagrangian level; its possible origin though in string theory remains an open interesting problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا