ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation Control for UAVs Using a Flux Guided Approach

63   0   0.0 ( 0 )
 نشر من قبل Hubert P. H. Shum
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While multiple studies have proposed methods for the formation control of unmanned aerial vehicles (UAV), the trajectories generated are generally unsuitable for tracking targets where the optimum coverage of the target by the formation is required at all times. We propose a path planning approach called the Flux Guided (FG) method, which generates collision-free trajectories while maximising the coverage of one or more targets. We show that by reformulating an existing least-squares flux minimisation problem as a constrained optimisation problem, the paths obtained are $1.5 times$ shorter and track directly toward the target. Also, we demonstrate that the scale of the formation can be controlled during flight, and that this feature can be used to track multiple scattered targets. The method is highly scalable since the planning algorithm is only required for a sub-set of UAVs on the open boundary of the formations surface. Finally, through simulating a 3d dynamic particle system that tracks the desired trajectories using a PID controller, we show that the resulting trajectories after time-optimal parameterisation are suitable for robotic controls.

قيم البحث

اقرأ أيضاً

In this paper, we propose a joint indoor localization and navigation algorithm to enable a swarm of unmanned aerial vehicles (UAVs) to deploy in a specific spatial formation in indoor environments. In the envisioned scenario, we consider a static use r acting as a central unit whose main task is to acquire all the UAV measurements carrying position-dependent information and to estimate the UAV positions when there is no existing infrastructure for positioning. Subsequently, the user exploits the estimated positions as inputs for the navigation control with the aim of deploying the UAVs in a desired formation in space (formation shaping). The user plans the trajectory of each UAV in real time, guaranteeing a safe navigation in the presence of obstacles. The proposed algorithm guides the UAVs to their desired final locations with good accuracy.
This work details the problem of aerial target capture using multiple UAVs. This problem is motivated from the challenge 1 of Mohammed Bin Zayed International Robotic Challenge 2020. The UAVs utilise visual feedback to autonomously detect target, app roach it and capture without disturbing the vehicle which carries the target. Multi-UAV collaboration improves the efficiency of the system and increases the chance of capturing the ball robustly in short span of time. In this paper, the proposed architecture is validated through simulation in ROS-Gazebo environment and is further implemented on hardware.
349 - Yajing Wang 2020
This paper studies the collision avoidance problem for autonomous multiple fixedwing UAVs in the complex integrated airspace. By studying and combining the online path planning method, the distributed model predictive control algorithm, and the geome tric reactive control approach, a three-layered collision avoidance system integrating conflict detection and resolution procedures is developed for multiple fixed-wing UAVs modeled by unicycle kinematics subject to input constraints. The effectiveness of the proposed methodology is evaluated and validated via test results of comparative simulations under both deterministic and probabilistic sensing conditions.
The work presented here is a novel biological approach for the compliant control of a robotic arm in real time (RT). We integrate a spiking cerebellar network at the core of a feedback control loop performing torque-driven control. The spiking cerebe llar controller provides torque commands allowing for accurate and coordinated arm movements. To compute these output motor commands, the spiking cerebellar controller receives the robots sensorial signals, the robots goal behavior, and an instructive signal. These input signals are translated into a set of evolving spiking patterns representing univocally a specific system state at every point of time. Spike-timing-dependent plasticity (STDP) is then supported, allowing for building adaptive control. The spiking cerebellar controller continuously adapts the torque commands provided to the robot from experience as STDP is deployed. Adaptive torque commands, in turn, help the spiking cerebellar controller to cope with built-in elastic elements within the robots actuators mimicking human muscles (inherently elastic). We propose a natural integration of a bio inspired control scheme, based on the cerebellum, with a compliant robot. We prove that our compliant approach outperforms the accuracy of the default factory-installed position control in a set of tasks used for addressing cerebellar motor behavior: controlling six degrees of freedom (DoF) in smooth movements, fast ballistic movements, and unstructured scenario compliant movements.
Differential Dynamic Programming (DDP) is an indirect method for trajectory optimization. Its efficiency derives from the exploitation of temporal structure (inherent to optimal control problems) and explicit roll-out/integration of the system dynami cs. However, it suffers from numerical instability and, when compared to direct methods, it has limited initialization options (allows initialization of controls, but not of states) and lacks proper handling of control constraints. These limitations are due to the fact that DDP is a single shooting algorithm. In this work, we tackle these issues with a direct-indirect hybridization approach that is primarily driven by the dynamic feasibility of the optimal control problem. Our feasibility search emulates the numerical resolution of a direct transcription problem with only dynamics constraints, namely a multiple shooting formulation. We show that our approach has better numerical convergence than BOX-DDP (a shooting method), and that its convergence rate and runtime performance are competitive with state-of-the-art direct transcription formulations solved using the interior point and active set algorithms available in KNITRO. We further show that our approach decreases the dynamic feasibility error monotonically -- as in state-of-the-art nonlinear programming algorithms. We demonstrate the benefits of our hybrid approach by generating complex and athletic motions for quadruped and humanoid robots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا