ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying Bug Patterns in Quantum Programs

165   0   0.0 ( 0 )
 نشر من قبل Jianjun Zhao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Bug patterns are erroneous code idioms or bad coding practices that have been proved to fail time and time again, which are usually caused by the misunderstanding of a programming languages features, the use of erroneous design patterns, or simple mistakes sharing common behaviors. This paper identifies and categorizes some bug patterns in the quantum programming language Qiskit and briefly discusses how to eliminate or prevent those bug patterns. We take this research as the first step to provide an underlying basis for debugging and testing quantum programs.



قيم البحث

اقرأ أيضاً

Realistic benchmarks of reproducible bugs and fixes are vital to good experimental evaluation of debugging and testing approaches. However, there is no suitable benchmark suite that can systematically evaluate the debugging and testing methods of qua ntum programs until now. This paper proposes Bugs4Q, a benchmark of thirty-six real, manually validated Qiskit bugs from four popular Qiskit elements (Terra, Aer, Ignis, and Aqua), supplemented with the test cases for reproducing buggy behaviors. Bugs4Q also provides interfaces for accessing the buggy and fix
Grey-box fuzz testing has revealed thousands of vulnerabilities in real-world software owing to its lightweight instrumentation, fast coverage feedback, and dynamic adjusting strategies. However, directly applying grey-box fuzzing to input-dependent multithreaded programs can be extremely inefficient. In practice, multithreading-relevant bugs are usually buried in sophisticated program flows. Meanwhile, the existing grey-box fuzzing techniques do not stress thread-interleavings which affect execution states in multithreaded programs. Therefore, mainstream grey-box fuzzers cannot effectively test problematic segments in multithreaded programs despite they might obtain high code coverage statistics. To this end, we propose MUZZ, a new grey-box fuzzing technique that hunts for bugs in multithreaded programs. MUZZ owns three novel thread-aware instrumentations, namely coverage-oriented instrumentation, thread-context instrumentation, and schedule-intervention instrumentation. During fuzzing, these instrumentations engender runtime feedback to stress execution states caused by thread interleavings. By leveraging the feedback in the dynamic seed selection and execution strategies, MUZZ preserves more valuable seeds that expose bugs in a multithreading context. We evaluate MUZZ on 12 real-world software programs. Experiments show that MUZZ outperforms AFL in both multithreading-relevant seed generation and concurrency-vulnerability detection. Further, by replaying the target programs against the generated seeds, MUZZ also reveals more concurrency-bugs (e.g., data-races, thread-leaks) than AFL. In total, MUZZ detected 8 new concurrency-vulnerabilities and 19 new concurrency-bugs. At the time of writing, 4 CVE IDs have been assigned to the reported issues.
Dynamic programming languages, such as PHP, JavaScript, and Python, provide built-in data structures including associative arrays and objects with similar semantics-object properties can be created at run-time and accessed via arbitrary expressions. While a high level of security and safety of applications written in these languages can be of a particular importance (consider a web application storing sensitive data and providing its functionality worldwide), dynamic data structures pose significant challenges for data-flow analysis making traditional static verification methods both unsound and imprecise. In this paper, we propose a sound and precise approach for value and points-to analysis of programs with associative arrays-like data structures, upon which data-flow analyses can be built. We implemented our approach in a web-application domain-in an analyzer of PHP code.
97 - Jianjun Zhao 2020
Quantum software plays a critical role in exploiting the full potential of quantum computing systems. As a result, it is drawing increasing attention recently. This paper defines the term quantum software engineering and introduces a quantum software life cycle. Based on these, the paper provides a comprehensive survey of the current state of the art in the field and presents the challenges and opportunities that we face. The survey summarizes the technology available in the various phases of the quantum software life cycle, including quantum software requirements analysis, design, implementation, test, and maintenance. It also covers the crucial issue of quantum software reuse.
In any sufficiently complex software system there are experts, having a deeper understanding of parts of the system than others. However, it is not always clear who these experts are and which particular parts of the system they can provide help with . We propose a framework to elicit the expertise of developers and recommend experts by analyzing complexity measures over time. Furthermore, teams can detect those parts of the software for which currently no, or only few experts exist and take preventive actions to keep the collective code knowledge and ownership high. We employed the developed approach at a medium-sized company. The results were evaluated with a survey, comparing the perceived and the computed expertise of developers. We show that aggregated code metrics can be used to identify experts for different software components. The identified experts were rated as acceptable candidates by developers in over 90% of all cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا