ﻻ يوجد ملخص باللغة العربية
In this manuscript we establish local Holder regularity estimates for bounded solutions of a certain class of doubly degenerate evolution PDEs. By making use of intrinsic scaling techniques and geometric tangential methods, we derive sharp regularity estimates for such models, which depend only on universal and compatibility parameters of the problem. In such a scenario, our results are natural improvements for former ones in the context of nonlinear evolution PDEs with degenerate structure via a unified approach. As a consequence for our findings and approach, we address a Liouville type result for entire solutions of a related homogeneous problem with frozen coefficients and asymptotic estimates under a certain approximating regime, which may have their own mathematical interest. We also deliver explicit examples of degenerate PDEs where our results take place.
In this paper, we study parabolic equations in divergence form with coefficients that are singular degenerate as some Muckenhoupt weight functions in one spatial variable. Under certain conditions, weighted reverse H{o}lders inequalities are establis
We study a class of linear parabolic equations in divergence form with degenerate coefficients on the upper half space. Specifically, the equations are considered in $(-infty, T) times mathbb{R}^d_+$, where $mathbb{R}^d_+ = {x in mathbb{R}^d,:, x_d>0
We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are begin{equation} u_t= abla cdot bigg( | abla u|^{p-2} abla u bigg), quad text{ for } quad 1<p<2, end
This paper is concerned with higher Holder regularity for viscosity solutions to non-translation invariant second order integro-PDEs, compared to cite{mou2018}. We first obtain $C^{1,alpha}$ regularity estimates for fully nonlinear integro-PDEs. We t
Conditions for the existence and uniqueness of weak solutions for a class of nonlinear nonlocal degenerate parabolic equations are established. The asymptotic behaviour of the solutions as time tends to infinity are also studied. In particular, the f