ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Weather-induced Home Insurance Risks with Support Vector Machine Regression

108   0   0.0 ( 0 )
 نشر من قبل Asim Dey
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Insurance industry is one of the most vulnerable sectors to climate change. Assessment of future number of claims and incurred losses is critical for disaster preparedness and risk management. In this project, we study the effect of precipitation on a joint dynamics of weather-induced home insurance claims and losses. We discuss utility and limitations of such machine learning procedures as Support Vector Machines and Artificial Neural Networks, in forecasting future claim dynamics and evaluating associated uncertainties. We illustrate our approach by application to attribution analysis and forecasting of weather-induced home insurance claims in a middle-sized city in the Canadian Prairies.

قيم البحث

اقرأ أيضاً

Support vector regression (SVR) is one of the most popular machine learning algorithms aiming to generate the optimal regression curve through maximizing the minimal margin of selected training samples, i.e., support vectors. Recent researchers revea l that maximizing the margin distribution of whole training dataset rather than the minimal margin of a few support vectors, is prone to achieve better generalization performance. However, the margin distribution support vector regression machines suffer difficulties resulted from solving a non-convex quadratic optimization, compared to the margin distribution strategy for support vector classification, This paper firstly proposes a maximal margin distribution model for SVR(MMD-SVR), then implementing coupled constrain factor to convert the non-convex quadratic optimization to a convex problem with linear constrains, which enhance the training feasibility and efficiency for SVR to derived from maximizing the margin distribution. The theoretical and empirical analysis illustrates the superiority of MMD-SVR. In addition, numerical experiments show that MMD-SVR could significantly improve the accuracy of prediction and generate more smooth regression curve with better generalization compared with the classic SVR.
The twin support vector machine and its extensions have made great achievements in dealing with binary classification problems, however, which is faced with some difficulties such as model selection and solving multi-classification problems quickly. This paper is devoted to the fast regularization parameter tuning algorithm for the twin multi-class support vector machine. A new sample dataset division method is adopted and the Lagrangian multipliers are proved to be piecewise linear with respect to the regularization parameters by combining the linear equations and block matrix theory. Eight kinds of events are defined to seek for the starting event and then the solution path algorithm is designed, which greatly reduces the computational cost. In addition, only few points are combined to complete the initialization and Lagrangian multipliers are proved to be 1 as the regularization parameter tends to infinity. Simulation results based on UCI datasets show that the proposed method can achieve good classification performance with reducing the computational cost of grid search method from exponential level to the constant level.
We propose a method for support vector machine classification using indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss function, our algorithm simultaneously computes support vectors and a proxy kernel matrix used in f orming the loss. This can be interpreted as a penalized kernel learning problem where indefinite kernel matrices are treated as a noisy observations of a true Mercer kernel. Our formulation keeps the problem convex and relatively large problems can be solved efficiently using the projected gradient or analytic center cutting plane methods. We compare the performance of our technique with other methods on several classic data sets.
We propose $ell_1$ norm regularized quadratic surface support vector machine models for binary classification in supervised learning. We establish their desired theoretical properties, including the existence and uniqueness of the optimal solution, r eduction to the standard SVMs over (almost) linearly separable data sets, and detection of true sparsity pattern over (almost) quadratically separable data sets if the penalty parameter of $ell_1$ norm is large enough. We also demonstrate their promising practical efficiency by conducting various numerical experiments on both synthetic and publicly available benchmark data sets.
Quantum algorithms can enhance machine learning in different aspects. Here, we study quantum-enhanced least-square support vector machine (LS-SVM). Firstly, a novel quantum algorithm that uses continuous variable to assist matrix inversion is introdu ced to simplify the algorithm for quantum LS-SVM, while retaining exponential speed-up. Secondly, we propose a hybrid quantum-classical version for sparse solutions of LS-SVM. By encoding a large dataset into a quantum state, a much smaller transformed dataset can be extracted using quantum matrix toolbox, which is further processed in classical SVM. We also incorporate kernel methods into the above quantum algorithms, which uses both exponential growth Hilbert space of qubits and infinite dimensionality of continuous variable for quantum feature maps. The quantum LS-SVM exploits quantum properties to explore important themes for SVM such as sparsity and kernel methods, and stresses its quantum advantages ranging from speed-up to the potential capacity to solve classically difficult machine learning tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا