ترغب بنشر مسار تعليمي؟ اضغط هنا

Halo-model analysis of the clustering of photometric luminous red galaxies at $0.10 leq z leq 1.05$ from the Subaru Hyper Suprime-Cam Survey

87   0   0.0 ( 0 )
 نشر من قبل Shogo Ishikawa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the clustering analysis of photometric luminous red galaxies (LRGs) at a redshift range of $0.1leq z leq 1.05$ using $615,317$ photometric LRGs selected from the Hyper Suprime-Cam Subaru Strategic Program covering $sim124$ deg$^{2}$. Our sample covers a broad range of stellar masses and photometric redshifts and enables a halo occupation distribution analysis to study the redshift and stellar-mass dependence of dark halo properties of LRGs. We find a tight correlation between the characteristic dark halo mass to host central LRGs, $M_{min}$, and the number density of LRGs independently of redshifts, indicating that the formation of LRGs is associated with the global environment. The $M_{min}$ of LRGs depends only weakly on the stellar mass $M_{star}$ at $M_{star} lesssim 10^{10.75}h^{-2} M_{odot}$ at $0.3<z<1.05$, in contrast to the case for all photometrically selected galaxies for which $M_{min}$ shows significant dependence on $M_{star}$ even at low $M_{star}$. The weak stellar mass dependence is indicative of the dark halo mass being the key parameter for the formation of LRGs rather than the stellar mass. Our result suggests that the halo mass of $sim 10^{12.5 pm 0.2}h^{-1} M_{odot}$ is the critical mass for an efficient halo quenching due to the halo environment. We compare our result with the result of the hydrodynamical simulation to find that low-mass LRGs at $z sim 1$ will increase their stellar masses by an order magnitude from $z=1$ to $0$ through mergers and satellite accretions, and a large fraction of massive LRGs at $z<0.9$ consist of LRGs that are recently migrated from massive green valley galaxies or those evolved from less massive LRGs through mergers and satellite accretions.



قيم البحث

اقرأ أيضاً

We present clustering analysis results from 10,381 Lyman break galaxies (LBGs) at z~ 4-7, identified in the Hubble legacy deep imaging and new complimentary large-area Subaru/Hyper Suprime-Cam data. We measure the angular correlation functions (ACFs) of these LBGs at z~4, 5, 6, and 7, and fit these measurements using halo occupation distribution (HOD) models that provide an estimate of halo masses, M_h~(1-20)x10^11 Msun. Our M_h estimates agree with those obtained by previous clustering studies in a UV-magnitude vs. M_h plane, and allow us to calculate stellar-to-halo mass ratios (SHMRs) of LBGs. By comparison with the z~0 SHMR, we identify evolution of the SHMR from z~0 to z~4, and z~4 to z~7 at the >98% confidence levels. The SHMR decreases by a factor of ~2 from z~0 to 4, and increases by a factor of ~4 from z~4 to 7. We compare our SHMRs with results of a hydrodynamic simulation and a semi-analytic model, and find that these theoretical studies do not predict the SHMR increase from z~4 to 7. We obtain the baryon conversion efficiency (BCE) of LBGs at z~4, and find that the BCE increases with increasing dark matter halo mass. Finally, we compare our clustering+HOD estimates with results from abundance matching techniques, and conclude that the M_h estimates of the clustering+HOD analyses agree with those of the simple abundance matching within a factor of 3, and that the agreement improves when using more sophisticated abundance matching techniques that include subhalos, incompleteness, and/or evolution in the star formation and stellar mass functions.
We present a description of the second data release for the photometric redshift (photo-$z$) of the Subaru Strategic Program for the Hyper-Suprime Cam survey. Our photo-$z$ products for the entire area in the Data Release 2 are publicly available, an d both our point estimate catalog products and full PDFs can be retrieved from the data release site, url{https://hsc-release.mtk.nao.ac.jp/}.
105 - M. Tanaka , M. Chiba , Y. Komiyama 2009
We present a photometric survey of the stellar halo of the Andromeda galaxy, using Suprime-Cam on the Subaru Telescope. A detailed analysis of VI color-magnitude diagrams of the resolved stellar population is used to measure properties such as line-o f-sight distance, surface brightness, metallicity, and age, and these are used to isolate and characterize different components of the M31 halo: (1) several substructures, and (2) the smooth halo. First, we study M31s halo substructure along the north-west/south-east minor axis out to R ~ 100 kpc and the south-west major axis region at R ~ 60 kpc. We confirm two substructures in the south-east halo reported by Ibata et al. (2007) and discover two overdense substructures in the north-west halo. We investigate the properties of these four substructures as well as other structures including the western shelf and find that differences in stellar populations among these systems, thereby suggesting each has a different origin. Our statistical analysis implies that the M31 halo as a whole may contain at least 16 substructures, each with a different origin. Second, we investigate the properties of an underlying, smooth and extended halo component out to R > 100 kpc. We find that the surface density of this smooth halo can be fitted to a Hernquist model of scale radius ~ 17 kpc or a power-law profile with ~ R^{-2.17 +/- 0.15}. In contrast to the relative smoothness of the halo density profile, its metallicity distribution appears to be spatially non-uniform with non-monotonic variations with radius, suggesting that the halo population has not had sufficient time to dynamically homogenize the accreted populations. Further implications for the formation of the M31 halo are discussed.
As part of our survey of galactic stellar halos, we investigate the structure and stellar populations of the northern outer part of the stellar halo in NGC55, a member galaxy of the Sculptor Group, using deep and wide-field V- and I-band images taken with Subaru/Suprime-Cam. Based on the analysis of the color-magnitude diagrams (CMDs) for red-giant-branch (RGB) stars, we derive a tip of RGB (TRGB)-based distance modulus to the galaxy of (m-M)_0 = 26.58 +/- 0.11 (d = 2.1 +/- 0.1 Mpc). From the stellar density maps, we detect the asymmetrically disturbed, thick disk structure and two metal-poor overdense substructures in the north region of NGC55, which may correspond to merger remnants associated with hierarchical formation of NGC55s halo. In addition, we identify a diffuse metal-poor halo extended out to at least z ~ 16 kpc from the galactic plane. The surface-brightness profiles toward the z-direction perpendicular to the galactic plane suggest that the stellar density distribution in the northern outer part of NGC55 is described by a locally isothermal disk at z <~ 6 kpc and a likely diffuse metal-poor halo with V-band surface brightness of mu_V >~ 32 mag arcsec^{-2}, where old RGB stars dominate. We derive the metallicity distributions (MDs) of these structures on the basis of the photometric comparison of RGB stars with the theoretical stellar evolutionary models. The MDs of the thick disk structures show the peak and mean metallicity of [Fe/H]peak ~ -1.4 and [Fe/H]mean ~ -1.7, respectively, while the outer substructures show more metal-poor features than the thick disk structure. Combined with the current results with our previous study for M31s halo, we discuss the possible difference in the formation process of stellar halos among different Hubble types.
We present the photometric properties of a sample of infrared (IR) bright dust obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam (HSC) on the Subaru Telescope and all-sky mid-IR (MIR) images taken wi th Wide-Field Infrared Survey Explorer (WISE), we discovered 48 DOGs with $i - K_mathrm{s} > 1.2$ and $i - [22] > 7.0$, where $i$, $K_mathrm{s}$, and [22] represent AB magnitude in the $i$-band, $K_mathrm{s}$-band, and 22 $mu$m, respectively, in the GAMA 14hr field ($sim$ 9 deg$^2$). Among these objects, 31 ($sim$ 65 %) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show a NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma $z$ = 1.99 $pm$ 0.45, we calculated their total IR luminosity using an empirical relation between 22 $mu$m luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 $pm$ 1.1) $times$ $10^{13}$ L$_{odot}$, which classifies them as hyper-luminous infrared galaxies (HyLIRGs). We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 $mu$m flux greater than 3.0 mJy and with $i$-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log $phi$ = -6.59 $pm$ 0.11 [Mpc$^{-3}$]. The IR LF for DOGs including data obtained from the literature is well fitted by a double-power law. The derived lower limit for the IR LD for our sample is $rho_{mathrm{IR}}$ $sim$ 3.8 $times$ 10$^7$ [L$_{odot}$ Mpc$^{-3}$] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies (ULIRGs), and that of all DOGs are $>$ 3 %, $>$ 9 %, and $>$ 15 %, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا