ﻻ يوجد ملخص باللغة العربية
We study the class of all finite directed graphs up to primitive positive constructability. The resulting order has a unique greatest element, namely the graph $P_1$ with one vertex and no edges. The graph $P_1$ has a unique greatest lower bound, namely the graph $P_2$ with two vertices and one directed edge. Our main result is a complete description of the greatest lower bounds of $P_2$; we call these graphs submaximal. We show that every graph that is not equivalent to $P_1$ and $P_2$ is below one of the submaximal graphs.
The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. A reduced graph $G$ is said to be maximal if any reduced graph contain
Let $mathfrak{n}$ be a nonempty, proper, convex subset of $mathbb{C}$. The $mathfrak{n}$-maximal operators are defined as the operators having numerical ranges in $mathfrak{n}$ and are maximal with this property. Typical examples of these are the max
Algebras generated by strictly positive matrices are described up to similarity, including the commutative, simple, and semisimple cases. We provide sufficient conditions for some block diagonal matrix algebras to be generated by a set of nonnegative
We show a collection of scripts, called $G$-strongly positive scripts, which is used to recognize critical configurations of a chip firing game (CFG) on a multi-digraph with a global sink. To decrease the time of the process of recognition caused by
The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has been a recent