ﻻ يوجد ملخص باللغة العربية
We present new empirical constraints on the evolution of $rho_{rm H_2}$, the cosmological mass density of molecular hydrogen, back to $zapprox2.5$. We employ a statistical approach measuring the average observed $850mu{rm m}$ flux density of near-infrared selected galaxies as a function of redshift. The redshift range considered corresponds to a span where the $850mu{rm m}$ band probes the Rayleigh-Jeans tail of thermal dust emission in the rest-frame, and can therefore be used as an estimate of the mass of the interstellar medium (ISM). Our sample comprises of ${approx}150,000$ galaxies in the UKIDSS-UDS field with near-infrared magnitudes $K_{rm AB}leq25$ mag and photometric redshifts with corresponding probability distribution functions derived from deep 12-band photometry. With a sample approximately 2 orders of magnitude larger than in previous works we significantly reduce statistical uncertainties on $rho_{rm H_2}$ to $zapprox2.5$. Our measurements are in broad agreement with recent direct estimates from blank field molecular gas surveys, finding that the epoch of molecular gas coincides with the peak epoch of star formation with $rho_{rm H_2}approx2times10^7,{rm M_odot},{rm Mpc^{-3}}$ at $zapprox2$. We demonstrate that $rho_{rm H_2}$ can be broadly modelled by inverting the star-formation rate density with a fixed or weakly evolving star-formation efficiency. This constant efficiency model shows a similar evolution to our statistically derived $rho_{rm H_2}$, indicating that the dominant factor driving the peak star formation history at $zapprox2$ is a larger supply of molecular gas in galaxies rather than a significant evolution of the star-formation rate efficiency within individual galaxies.
One of the last missing pieces in the puzzle of galaxy formation and evolution through cosmic history is a detailed picture of the role of the cold gas supply in the star-formation process. Cold gas is the fuel for star formation, and thus regulates
In this paper we use ASPECS, the ALMA Spectroscopic Survey in the {em Hubble} Ultra Deep Field (UDF) in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of
We study the evolution of the cold gas content of galaxies by splitting the interstellar medium into its atomic and molecular hydrogen components, using the galaxy formation model GALFORM in the LCDM framework. We calculate the molecular-to-atomic hy
[Abridged] Do some environments favor efficient conversion of molecular gas into stars? To answer this, we need to be able to estimate the H2 mass. Traditionally, this is done using CO and a few assumptions but the Herschel observations in the FIR ma
We are just starting to understand the physical processes driving the dramatic change in cosmic star-formation rate between $zsim 2$ and the present day. A quantity directly linked to star formation is the molecular gas density, which should be measu