ترغب بنشر مسار تعليمي؟ اضغط هنا

BLOWN: A Blockchain Protocol for Single-Hop Wireless Networks under Adversarial SINR

319   0   0.0 ( 0 )
 نشر من قبل Minghui Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Known as a distributed ledger technology (DLT), blockchain has attracted much attention due to its properties such as decentralization, security, immutability and transparency, and its potential of servicing as an infrastructure for various applications. Blockchain can empower wireless networks with identity management, data integrity, access control, and high-level security. However, previous studies on blockchain-enabled wireless networks mostly focus on proposing architectures or building systems with popular blockchain protocols. Nevertheless, such existing protocols have obvious shortcomings when adopted in wireless networks where nodes have limited physical resources, fall short of well-established reliable channels, variable bandwidths impacted by environments or jamming attacks. In this paper, we propose a novel consensus protocol named Proof-of-Channel (PoC) leveraging the natural properties of wireless communications, and a BLOWN protocol (BLOckchain protocol for Wireless Networks) for wireless networks under an adversarial SINR model. We formalize BLOWN with the universal composition framework and prove its security properties, namely persistence and liveness, as well as its strengths in countering against adversarial jamming, double-spending, and Sybil attacks, which are also demonstrated by extensive simulation studies.

قيم البحث

اقرأ أيضاً

This paper presents $mathit{wChain}$, a blockchain protocol specifically designed for multihop wireless networks that deeply integrates wireless communication properties and blockchain technologies under the realistic SINR model. We adopt a hierarchi cal spanner as the communication backbone to address medium contention and achieve fast data aggregation within $O(log NlogGamma)$ slots where $N$ is the network size and $Gamma$ refers to the ratio of the maximum distance to the minimum distance between any two nodes. Besides, $mathit{wChain}$ employs data aggregation and reaggregation, and node recovery mechanisms to ensure efficiency, fault tolerance, persistence, and liveness. The worst-case runtime of $mathit{wChain}$ is upper bounded by $O(flog NlogGamma)$, where $f=lfloor frac{N}{2} rfloor$ is the upper bound of the number of faulty nodes. To validate our design, we conduct both theoretical analysis and simulation studies, and the results only demonstrate the nice properties of $mathit{wChain}$, but also point to a vast new space for the exploration of blockchain protocols in wireless networks.
In this paper, we propose a blockchain-based computing verification protocol, called EntrapNet, for distributed shared computing networks, an emerging underlying network for many internet of things (IoT) applications. EntrapNet borrows the idea from the practice of entrapment in criminal law to reduce the possibility of receiving incorrect computing results from trustless service providers who have offered the computing resources. Furthermore, we mathematically optimize EntrapNet to deal with the fundamental tradeoff of a network: security and efficiency. We present an asymptotic optimal solution to this optimization. It will be seen that EntrapNet can be performed as an independent and low-cost layer atop any trustless network that requires outsourced computing, thus making secure computing affordable and practical.
Recent advances in antenna technology have made the design of multi-beam antennas (MBA) feasible. Compared to an omni-directional or a single beam directional antenna, an MBA equipped node can achieve a throughput of up to m times, by simultaneously communicating on its m non-interfering beams. As a result, a few multi-beam directional medium access control (MAC) schemes have been proposed in the literature recently, which are implemented mostly on the in-house simulation setups in Matlab or C/C++. These implementations make many assumptions to simplify their design, without a thorough implementation of other network layers. However, the implementation of a multi-beam MAC scheme on the well-known discrete event network simulator platforms (such as the Riverbed Modeler, NS3, QualNet) is challenging as it requires extensive changes and additions to various source code modules. In fact, the network protocols in these simulator packages have been mainly designed for omni-directional communication, and very few implementations of directional MAC and other network protocols exist in the literature. This paper presents a framework to implement a multi-beam directional MAC scheme in multi-hop wireless networks, by using the Wireless Suite of Riverbed Modeler. The detailed implementation procedures are described for multi-beam antenna module, multi-beam node model, concurrent packet transmission and reception, scheduling, collision avoidance, retransmission, and local node synchronization. These MAC modules and methodology can be very helpful to the researchers and developers for implementing the single-beam as well as multi-beam directional MAC and routing protocols in Riverbed Modeler.
362 - Chen Avin 2008
The rules governing the availability and quality of connections in a wireless network are described by physical models such as the signal-to-interference & noise ratio (SINR) model. For a collection of simultaneously transmitting stations in the plan e, it is possible to identify a reception zone for each station, consisting of the points where its transmission is received correctly. The resulting SINR diagram partitions the plane into a reception zone per station and the remaining plane where no station can be heard. SINR diagrams appear to be fundamental to understanding the behavior of wireless networks, and may play a key role in the development of suitable algorithms for such networks, analogous perhaps to the role played by Voronoi diagrams in the study of proximity queries and related issues in computational geometry. So far, however, the properties of SINR diagrams have not been studied systematically, and most algorithmic studies in wireless networking rely on simplified graph-based models such as the unit disk graph (UDG) model, which conveniently abstract away interference-related complications, and make it easier to handle algorithmic issues, but consequently fail to capture accurately some important aspects of wireless networks. The current paper focuses on obtaining some basic understanding of SINR diagrams, their properties and their usability in algorithmic applications. Specifically, based on some algebraic properties of the polynomials defining the reception zones we show that assuming uniform power transmissions, the reception zones are convex and relatively well-rounded. These results are then used to develop an efficient approximation algorithm for a fundamental point location problem in wireless networks.
In this paper, we consider the problem of modelling the average delay in an IEEE 802.11 DCF wireless mesh network with a single root node under light traffic. We derive expression for mean delay for a co-located wireless mesh network, when packet gen eration is homogeneous Poisson process with rate lambda. We also show how our analysis can be extended for non-homogeneous Poisson packet generation. We model mean delay by decoupling queues into independent M/M/1 queues. Extensive simulations are conducted to verify the analytical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا