ترغب بنشر مسار تعليمي؟ اضغط هنا

Refine Myself by Teaching Myself: Feature Refinement via Self-Knowledge Distillation

53   0   0.0 ( 0 )
 نشر من قبل Mingi Ji
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge distillation is a method of transferring the knowledge from a pretrained complex teacher model to a student model, so a smaller network can replace a large teacher network at the deployment stage. To reduce the necessity of training a large teacher model, the recent literatures introduced a self-knowledge distillation, which trains a student network progressively to distill its own knowledge without a pretrained teacher network. While Self-knowledge distillation is largely divided into a data augmentation based approach and an auxiliary network based approach, the data augmentation approach looses its local information in the augmentation process, which hinders its applicability to diverse vision tasks, such as semantic segmentation. Moreover, these knowledge distillation approaches do not receive the refined feature maps, which are prevalent in the object detection and semantic segmentation community. This paper proposes a novel self-knowledge distillation method, Feature Refinement via Self-Knowledge Distillation (FRSKD), which utilizes an auxiliary self-teacher network to transfer a refined knowledge for the classifier network. Our proposed method, FRSKD, can utilize both soft label and feature-map distillations for the self-knowledge distillation. Therefore, FRSKD can be applied to classification, and semantic segmentation, which emphasize preserving the local information. We demonstrate the effectiveness of FRSKD by enumerating its performance improvements in diverse tasks and benchmark datasets. The implemented code is available at https://github.com/MingiJi/FRSKD.



قيم البحث

اقرأ أيضاً

High storage and computational costs obstruct deep neural networks to be deployed on resource-constrained devices. Knowledge distillation aims to train a compact student network by transferring knowledge from a larger pre-trained teacher model. Howev er, most existing methods on knowledge distillation ignore the valuable information among training process associated with training results. In this paper, we provide a new Collaborative Teaching Knowledge Distillation (CTKD) strategy which employs two special teachers. Specifically, one teacher trained from scratch (i.e., scratch teacher) assists the student step by step using its temporary outputs. It forces the student to approach the optimal path towards the final logits with high accuracy. The other pre-trained teacher (i.e., expert teacher) guides the student to focus on a critical region which is more useful for the task. The combination of the knowledge from two special teachers can significantly improve the performance of the student network in knowledge distillation. The results of experiments on CIFAR-10, CIFAR-100, SVHN and Tiny ImageNet datasets verify that the proposed knowledge distillation method is efficient and achieves state-of-the-art performance.
Knowledge distillation, which involves extracting the dark knowledge from a teacher network to guide the learning of a student network, has emerged as an important technique for model compression and transfer learning. Unlike previous works that expl oit architecture-specific cues such as activation and attention for distillation, here we wish to explore a more general and model-agnostic approach for extracting richer dark knowledge from the pre-trained teacher model. We show that the seemingly different self-supervision task can serve as a simple yet powerful solution. For example, when performing contrastive learning between transformed entities, the noisy predictions of the teacher network reflect its intrinsic composition of semantic and pose information. By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student. In this paper, we discuss practical ways to exploit those noisy self-supervision signals with selective transfer for distillation. We further show that self-supervision signals improve conventional distillation with substantial gains under few-shot and noisy-label scenarios. Given the richer knowledge mined from self-supervision, our knowledge distillation approach achieves state-of-the-art performance on standard benchmarks, i.e., CIFAR100 and ImageNet, under both similar-architecture and cross-architecture settings. The advantage is even more pronounced under the cross-architecture setting, where our method outperforms the state of the art CRD by an average of 2.3% in accuracy rate on CIFAR100 across six different teacher-student pairs.
We propose a learning framework named Feature Fusion Learning (FFL) that efficiently trains a powerful classifier through a fusion module which combines the feature maps generated from parallel neural networks. Specifically, we train a number of para llel neural networks as sub-networks, then we combine the feature maps from each sub-network using a fusion module to create a more meaningful feature map. The fused feature map is passed into the fused classifier for overall classification. Unlike existing feature fusion methods, in our framework, an ensemble of sub-network classifiers transfers its knowledge to the fused classifier and then the fused classifier delivers its knowledge back to each sub-network, mutually teaching one another in an online-knowledge distillation manner. This mutually teaching system not only improves the performance of the fused classifier but also obtains performance gain in each sub-network. Moreover, our model is more beneficial because different types of network can be used for each sub-network. We have performed a variety of experiments on multiple datasets such as CIFAR-10, CIFAR-100 and ImageNet and proved that our method is more effective than other alternative methods in terms of performance of both sub-networks and the fused classifier.
Knowledge distillation often involves how to define and transfer knowledge from teacher to student effectively. Although recent self-supervised contrastive knowledge achieves the best performance, forcing the network to learn such knowledge may damag e the representation learning of the original class recognition task. We therefore adopt an alternative self-supervised augmented task to guide the network to learn the joint distribution of the original recognition task and self-supervised auxiliary task. It is demonstrated as a richer knowledge to improve the representation power without losing the normal classification capability. Moreover, it is incomplete that previous methods only transfer the probabilistic knowledge between the final layers. We propose to append several auxiliary classifiers to hierarchical intermediate feature maps to generate diverse self-supervised knowledge and perform the one-to-one transfer to teach the student network thoroughly. Our method significantly surpasses the previous SOTA SSKD with an average improvement of 2.56% on CIFAR-100 and an improvement of 0.77% on ImageNet across widely used network pairs. Codes are available at https://github.com/winycg/HSAKD.
This paper addresses the problem of model compression via knowledge distillation. To this end, we propose a new knowledge distillation method based on transferring feature statistics, specifically the channel-wise mean and variance, from the teacher to the student. Our method goes beyond the standard way of enforcing the mean and variance of the student to be similar to those of the teacher through an $L_2$ loss, which we found it to be of limited effectiveness. Specifically, we propose a new loss based on adaptive instance normalization to effectively transfer the feature statistics. The main idea is to transfer the learned statistics back to the teacher via adaptive instance normalization (conditioned on the student) and let the teacher network evaluate via a loss whether the statistics learned by the student are reliably transferred. We show that our distillation method outperforms other state-of-the-art distillation methods over a large set of experimental settings including different (a) network architectures, (b) teacher-student capacities, (c) datasets, and (d) domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا