ترغب بنشر مسار تعليمي؟ اضغط هنا

IPHC Emittance-meters: Design and Development

149   0   0.0 ( 0 )
 نشر من قبل Elian Bouquerel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Institut Pluridisciplinaire Hubert Curien (IPHC) of Strasbourg, which celebrates its 15th year in 2021, is composed of four departments. Each of these departments comes from a different scientific horizon such as eco-physiology, chemistry, subatomic research and medical imaging. IPHC was created with the ambition of having different competences to develop high-level multidisciplinary programs with the basis of scientific instrumentation. Beam diagnostics is one of the main fields that has been intensively investigated during all these years within the team of the Instrumentation of Accelerators. This paper focuses on one of its major achievements, the Allison emittance-meter, developed in the framework of SPIRAL2, MYRRHA and FAIR projects.



قيم البحث

اقرأ أيضاً

A system for online measurement of the transverse beam emittance was developed. It is named $^{4}$PrOB$varepsilon$aM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multi ple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. The $^{4}$PrOB$varepsilon$aM system was deployed for characterization studies of the 18~MeV proton beam produced by the IBA Cyclone 18 MeV cyclotron at Bern University Hospital (Inselspital). The machine serves daily radioisotope production and multi-disciplinary research, which is carried out with a specifically conceived Beam Transport Line (BTL). The transverse RMS beam emittance of the cyclotron was measured as a function of several machine parameters, such as the magnetic field, RF peak voltage, and azimuthal angle of the stripper. The beam emittance was also measured using the method based on the quadrupole strength variation. The results obtained with both techniques were compared and a good agreement was found. In order to characterize the longitudinal dynamics, the proton energy distribution was measured. For this purpose, a method was developed based on aluminum absorbers of different thicknesses, a UniBEaM detector, and a Faraday cup. The results were an input for a simulation of the BTL developed in the MAD-X software. This tool allows machine parameters to be tuned online and the beam characteristics to be optimized for specific applications.
The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measur ed from an ensemble of muons assembled from those that pass through the experiment. A pure muon ensemble is selected using a particle-identification system that can reject efficiently both pions and electrons. The position and momentum of each muon are measured using a high-precision scintillating-fibre tracker in a 4,T solenoidal magnetic field. This paper presents the techniques used to reconstruct the phase-space distributions and reports the first particle-by-particle measurement of the emittance of the MICE Muon Beam as a function of muon-beam momentum.
119 - T. Akagi , S. Araki , Y. Honda 2017
We have been developing optical resonant cavities for laser-Compton scattering experiment at the Accelerator Test Facility in KEK. The main subject of the R&D is to increase laser pulse energy by coherently accumulating the pulses in an optical reson ant cavity. We report previous results, current status and future prospects, including a new idea of an optical resonant cavity.
The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino product ion starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilabs NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.
56 - Chuan Zhang 2021
Space-charge-induced emittance growth is a big con-cern for designing low energy and high intensity linacs. The Equipartitioning Principle was introduced to mini-mize space-charge-induced emittance growth by remov-ing free energy between the transver se and longitudinal degrees of freedom. In this study, a different design guide-line is being proposed. It suggests to hold the ratio of longitudinal emittance to transverse emittance around one and take advantage of low emittance transfer for minimizing emittance growth. Using a high intensity RFQ accelerator as an example, a comparison between the two design methods has been made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا