ﻻ يوجد ملخص باللغة العربية
Finding the ground state energy of electrons subject to an external electric field is a fundamental problem in computational chemistry. We prove that this electronic-structure problem, when restricted to a fixed single-particle basis and fixed number of electrons, is QMA-complete. Schuch and Verstraete have shown hardness for the electronic-structure problem with an additional site-specific external magnetic field, but without the restriction to a fixed basis. In their reduction, a local Hamiltonian on qubits is encoded in the site-specific magnetic field. In our reduction, the local Hamiltonian is encoded in the choice of spatial orbitals used to discretize the electronic-structure Hamiltonian. As a step in their proof, Schuch and Verstraete show a reduction from the antiferromagnetic Heisenberg Hamiltonian to the Fermi-Hubbard Hamiltonian. We combine this reduction with the fact that the antiferromagnetic Heisenberg Hamiltonian is QMA-hard to observe that the Fermi-Hubbard Hamiltonian on generic graphs is QMA-hard, even when all the hopping coefficients have the same sign. We then reduce from Fermi-Hubbard by showing that an instance of Fermi-Hubbard can be closely approximated by an instance of the Electronic-Structure Hamiltonian in a fixed basis. Finally, we show that estimating the energy of the lowest-energy Slater-determinant state (i.e., the Hartree-Fock state) is NP-complete for the Electronic-Structure Hamiltonian in a fixed basis.
We study the computational complexity of the N-representability problem in quantum chemistry. We show that this problem is QMA-complete, which is the quantum generalization of NP-complete. Our proof uses a simple mapping from spin systems to fermioni
The Local Hamiltonian problem is the problem of estimating the least eigenvalue of a local Hamiltonian, and is complete for the class QMA. The 1D problem on a chain of qubits has heuristics which work well, while the 13-state qudit case has been show
Quantum satisfiability is a constraint satisfaction problem that generalizes classical boolean satisfiability. In the quantum k-SAT problem, each constraint is specified by a k-local projector and is satisfied by any state in its nullspace. Bravyi sh
The Non-Identity Check problem asks whether a given a quantum circuit is far away from the identity or not. It is well known that this problem is QMA-Complete cite{JWB05}. In this note, it is shown that the Non-Identity Check problem remains QMA-Comp
Rikudo is a number-placement puzzle, where the player is asked to complete a Hamiltonian path on a hexagonal grid, given some clues (numbers already placed and edges of the path). We prove that the game is complete for NP, even if the puzzle has no h