ﻻ يوجد ملخص باللغة العربية
Optical spectroscopy and density-functional calculations reveal electronic properties of the nonmagnetickagome metal KV$_3$Sb$_5$. Temperature and frequency-dependent optical measurements down to 10K and up to 2 eV energy range confirm bulk nature of the charge-density-wave (CDW) state below 78 K and gauge the charge gap of $Delta_{CDW} approx$ 60 meV at 10 K. We further detect strong phonon anomalies and the prominent low-energy localization peak indicative of the unconventional charge transport caused by electron-phonon or electron-electron interactions. Possible CDW structures of KV$_3$Sb$_5$, the star and hexagon (inverse star), are strongly reminiscent of $p$-wave states expected in the Hubbard model on the kagome lattice at the filling level of the van Hove singularity. The proximity to this regime may have intriguing and far-reaching implications for the physics of KV$_3$Sb$_5$ and related materials.
Temperature-dependent reflectivity measurements on the kagome metal CsV$_3$Sb$_5$ in a broad frequency range of $50-20000$ cm$^{-1}$ down to $T$=10 K are reported. The charge-density wave (CDW) formed below $T_{rm CDW}$ = 94 K manifests itself in a p
I search for the ground state structures of the kagome metals KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$ using first principles calculations. Group-theoretical analysis shows that there are seventeen different distortions that are possible due to
Using first-principles calculations, we identify the origin of the observed charge density wave (CDW) formation in a layered kagome metal CsV$_3$Sb$_5$. It is revealed that the structural distortion of kagome lattice forming the trimeric and hexameri
The Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been de
Recently, intensive studies have revealed fascinating physics, such as charge density wave and superconducting states, in the newly synthesized kagome-lattice materials $A$V$_3$Sb$_5$ ($A$=K, Rb, Cs). Despite the rapid progress, fundamental aspects l