ترغب بنشر مسار تعليمي؟ اضغط هنا

The VLA Frontier Field Survey: A Comparison of the Radio and UV/optical size of $0.3 lesssim z lesssim 3$ star-forming galaxies

62   0   0.0 ( 0 )
 نشر من قبل Ian Heywood
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To investigate the growth history of galaxies, we measure the rest-frame radio, ultraviolet (UV), and optical sizes of 98 radio-selected, star-forming galaxies (SFGs) distributed over $0.3 lesssim z lesssim 3$ and median stellar mass of $log(M_star/ rm M_odot)approx10.4$. We compare the size of galaxy stellar disks, traced by rest-frame optical emission, relative to the overall extent of star formation activity that is traced by radio continuum emission. Galaxies in our sample are identified in three Hubble Frontier Fields: MACSJ0416.1$-$2403, MACSJ0717.5+3745, and MACSJ1149.5+2223. Radio continuum sizes are derived from 3 GHz and 6 GHz radio images ($lesssim 0$$.6$ resolution, $approx0.9, rm mu Jy, beam^{-1}$ noise level) from the Karl G. Jansky Very Large Array. Rest-frame UV and optical sizes are derived using observations from the Hubble Space Telescope and the ACS and WFC3 instruments. We find no clear dependence between the 3 GHz radio size and stellar mass of SFGs, which contrasts with the positive correlation between the UV/optical size and stellar mass of galaxies. Focusing on SFGs with $log(M_star/rm M_odot)>10$, we find that the radio/UV/optical emission tends to be more compact in galaxies with high star-formation rates ($rm SFRgtrsim 100,M_odot,yr^{-1}$), suggesting that a central, compact starburst (and/or an Active Galactic Nucleus) resides in the most luminous galaxies of our sample. We also find that the physical radio/UV/optical size of radio-selected SFGs with $log(M_star/rm M_odot)>10$ increases by a factor of $1.5-2$ from $zapprox 3$ to $zapprox0.3$, yet the radio emission remains two-to-three times more compact than that from the UV/optical. These findings indicate that these massive, {radio-selected} SFGs at $0.3 lesssim z lesssim 3$ tend to harbor centrally enhanced star formation activity relative to their outer-disks.

قيم البحث

اقرأ أيضاً

We investigate what drives the redshift evolution of the typical electron density ($n_e$) in star-forming galaxies, using a sample of 140 galaxies drawn primarily from KMOS$^{rm 3D}$ ($0.6lesssim{z}lesssim{2.6}$) and 471 galaxies from SAMI ($z<0.113$ ). We select galaxies that do not show evidence of AGN activity or outflows, to constrain the average conditions within H II regions. Measurements of the [SII]$lambda$6716/[SII]$lambda$6731 ratio in four redshift bins indicate that the local $n_e$ in the line-emitting material decreases from 187$^{+140}_{-132}$ cm$^{-3}$ at $zsim$ 2.2 to 32$^{+4}_{-9}$ cm$^{-3}$ at $zsim$ 0; consistent with previous results. We use the H$alpha$ luminosity to estimate the root-mean-square (rms) $n_e$ averaged over the volumes of star-forming disks at each redshift. The local and volume-averaged $n_e$ evolve at similar rates, hinting that the volume filling factor of the line-emitting gas may be approximately constant across $0lesssim{z}lesssim{2.6}$. The KMOS$^{rm 3D}$ and SAMI galaxies follow a roughly monotonic trend between $n_e$ and star formation rate, but the KMOS$^{rm 3D}$ galaxies have systematically higher $n_e$ than the SAMI galaxies at fixed offset from the star-forming main sequence, suggesting a link between the $n_e$ evolution and the evolving main sequence normalization. We quantitatively test potential drivers of the density evolution and find that $n_e$(rms) $simeq{n_{H_2}}$, suggesting that the elevated $n_e$ in high-$z$ H II regions could plausibly be the direct result of higher densities in the parent molecular clouds. There is also tentative evidence that $n_e$ could be influenced by the balance between stellar feedback, which drives the expansion of H II regions, and the ambient pressure, which resists their expansion.
We present Lyman continuum (LyC) radiation escape fraction $f_{rm{esc}}$ measurements for 183 spectroscopically confirmed star-forming galaxies in the redshift range $3.11 < z < 3.53$ in the textit{Chandra} Deep Field South. We use ground-based imagi ng to measure $f_{rm{esc}}$, and use ground- and space-based photometry to derive galaxy physical properties using spectral energy distribution (SED) fitting. We additionally derive [O,textsc{iii}],+,H$beta$ equivalent widths (that fall in the observed $K$ band) by including nebular emission in the SED fitting. After removing foreground contaminants, we report the discovery of 11 new candidate LyC leakers, with absolute LyC escape fractions, $f_{rm{esc}}$ in the range $0.07-0.52$. Most galaxies in our sample ($approx94%$) do not show any LyC leakage, and we place $1sigma$ upper limits of $f_{rm{esc}} < 0.07$ through weighted averaging, where the Lyman-break selected galaxies have $f_{rm{esc}} < 0.07$ and `blindly discovered galaxies with no prior photometric selection have $f_{rm{esc}} < 0.10$. We additionally measure $f_{rm{esc}} < 0.09$ for extreme emission line galaxies in our sample with rest-frame [O,textsc{iii}],+,H$beta$ equivalent widths $>300$,AA. For the candidate LyC leakers, we do not find a strong dependence of $f_{rm{esc}}$ on their stellar masses and/or specific star-formation rates, and no correlation between $f_{rm{esc}}$ and EW$_0$([O,textsc{iii}],+,H$beta$). We suggest that this lack of correlations may be explained by viewing angle and/or non-coincident timescales of starburst activity and periods of high $f_{rm{esc}}$. Alternatively, escaping radiation may predominantly occur in highly localised star-forming regions, thereby obscuring any global trends with galaxy properties. Both hypotheses have important consequences for models of reionisation.
We present the discovery and spectrophotometric characterization of a large sample of 164 faint ($i_{AB}$ $sim$ $23$-$25$ mag) star-forming dwarf galaxies (SFDGs) at redshift $0.13$ $leq z leq$ $0.88$ selected by the presence of bright optical emissi on lines in the VIMOS Ultra Deep Survey (VUDS). We investigate their integrated physical properties and ionization conditions, which are used to discuss the low-mass end of the mass-metallicity relation (MZR) and other key scaling relations. We use optical VUDS spectra in the COSMOS, VVDS-02h, and ECDF-S fields, as well as deep multiwavelength photometry, to derive stellar masses, star formation rates (SFR) and gas-phase metallicities. The VUDS SFDGs are compact (median $r_{e}$ $sim$ $1.2$ kpc), low-mass ($M_{*}$ $sim$ $10^7-10^9$ $M_{odot}$) galaxies with a wide range of star formation rates (SFR($Halpha$) $sim 10^{-3}-10^{1}$ $M_{odot}/yr$) and morphologies. Overall, they show a broad range of subsolar metallicities (12+log(O/H)=$7.26$-$8.7$; $0.04$ $lesssim Z/Z_{odot} lesssim$ $1$). The MZR of SFDGs shows a flatter slope compared to previous studies of galaxies in the same mass range and redshift. We find the scatter of the MZR partly explained in the low mass range by varying specific SFRs and gas fractions amongst the galaxies in our sample. Compared with simple chemical evolution models we find that most SFDGs do not follow the predictions of a closed-box model, but those from a gas regulating model in which gas flows are considered. While strong stellar feedback may produce large-scale outflows favoring the cessation of vigorous star formation and promoting the removal of metals, younger and more metal-poor dwarfs may have recently accreted large amounts of fresh, very metal-poor gas, that is used to fuel current star formation.
Galaxies at low-redshift typically possess negative gas-phase metallicity gradients (centres more metal-rich than their outskirts). Whereas, it is not uncommon to observe positive metallicity gradients in higher-redshift galaxies ($z gtrsim 0.6$). Br idging these epochs, we present gas-phase metallicity gradients of 84 star-forming galaxies between $0.08 < z < 0.84$. Using the galaxies with reliably determined metallicity gradients, we measure the median metallicity gradient to be negative ($-0.039^{+0.007}_{-0.009}$ dex/kpc). Underlying this, however, is significant scatter: $(8pm3)% [7]$ of galaxies have significantly positive metallicity gradients, $(38 pm 5)% [32]$ have significantly negative gradients, $(31pm5)% [26]$ have gradients consistent with being flat. (The remaining $(23pm5)% [19]$ have unreliable gradient estimates.) We notice a slight trend for a more negative metallicity gradient with both increasing stellar mass and increasing star formation rate (SFR). However, given the potential redshift and size selection effects, we do not consider these trends to be significant. Indeed, once we normalize the SFR relative to that of the main sequence, we do not observe any trend between the metallicity gradient and the normalized SFR. This is contrary to recent studies of galaxies at similar and higher redshifts. We do, however, identify a novel trend between the metallicity gradient of a galaxy and its size. Small galaxies ($r_d < 3$ kpc) present a large spread in observed metallicity gradients (both negative and positive gradients). In contrast, we find no large galaxies ($r_d > 3$ kpc) with positive metallicity gradients, and overall there is less scatter in the metallicity gradient amongst the large galaxies. These large (well-evolved) galaxies may be analogues of present-day galaxies, which also show a common negative metallicity gradient.
86 - Keunho Kim 2018
We use both photometric and spectroscopic data from the {it Hubble Space Telescope} to explore the relationships among 4000 AA break (D4000) strength, colors, stellar masses, and morphology, in a sample of 352 galaxies with log$(M_{*}/M_{odot}) > 9.4 4$ at 0.6 $lesssim z lesssim$ 1.2. We have identified authentically quiescent galaxies in the $UVJ$ diagram based on their D4000 strengths. This spectroscopic identification is in good agreement with their photometrically-derived specific star formation rates (sSFR). Morphologically, most (that is, 66 out of 68 galaxies, $sim$ 97 %) of these newly identified quiescent galaxies have a prominent bulge component. However, not all of the bulge-dominated galaxies are quenched. We found that bulge-dominated galaxies show positive correlations among the D4000 strength, stellar mass, and the Sersic index, while late-type disks do not show such strong positive correlations. Also, bulge-dominated galaxies are clearly separated into two main groups in the parameter space of sSFR vs. stellar mass and stellar surface density within the effective radius, $Sigma_{rm e}$, while late-type disks and irregulars only show high sSFR. This split is directly linked to the `blue cloud and the `red sequence populations, and correlates with the associated central compactness indicated by $Sigma_{rm e}$. While star-forming massive late-type disks and irregulars (with D4000 $<$ 1.5 and log$(M_{*}/M_{odot}) gtrsim 10.5$) span a stellar mass range comparable to bulge-dominated galaxies, most have systematically lower $Sigma_{rm e}$ $lesssim$ $10^{9}M_{odot}rm{kpc^{-2}}$. This suggests that the presence of a bulge is a necessary but not sufficient requirement for quenching at intermediate redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا