ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability manifolds of varieties with finite Albanese morphisms

229   0   0.0 ( 0 )
 نشر من قبل Chunyi Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a smooth projective complex variety whose Albanese morphism is finite, we show that every Bridgeland stability condition on its bounded derived category of coherent sheaves is geometric, in the sense that all skyscraper sheaves are stable with the same phase. Furthermore, we describe the stability manifolds of irregular surfaces and abelian threefolds with Picard rank one, and show that they are connected and contractible.



قيم البحث

اقرأ أيضاً

152 - Frederic Campana 2021
We show that any fibration of a special compact K{a}hler manifold X onto an Abelian variety has no multiple fibre in codimension one. This statement strengthens and extends previous results of Kawamata and Viehweg when $kappa$(X) = 0. This also corre cts the proof given in [2], 5.3 which was incomplete.
106 - Yuesen Chen 2018
In the present paper, we study the (twisted) 3-canonical map of varieties of Albanese fiber dimension one. Based on a theorem about the regularity of direct image of canonical sheaves, we prove that the 3-canonical map is generically birational when the genus of a general fiber of the Albanese map is 2.
In this paper, we construct a lax monoidal Topological Quantum Field Theory that computes virtual classes, in the Grothendieck ring of algebraic varieties, of $G$-representation varieties over manifolds with conic singularities, which we will call no defolds. This construction is valid for any algebraic group $G$, in any dimension and also in the parabolic setting. In particular, this TQFT allow us to compute the virtual classes of representation varieties over complex singular planar curves. In addition, in the case $G = mathrm{SL}_{2}(k)$, the virtual class of the associated character variety over a nodal closed orientable surface is computed both in the non-parabolic and in the parabolic scenarios.
279 - Yuri G. Zarhin 2020
These are notes of my lectures at the summer school Higher-dimensional geometry over finite fields in Goettingen, June--July 2007. We present a proof of Tates theorem on homomorphisms of abelian varieties over finite fields (including the $ell=p$ c ase) that is based on a quaternion trick. In fact, a a slightly stronger version of those theorems with finite coefficients is proven.
We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kahler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) to compute the stability thresholds for hypersu rfaces at generalized Eckardt points and for cubic surfaces at all points, and (c) to provide a new algebraic proof of Tians criterion for K-stability, amongst other applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا