ﻻ يوجد ملخص باللغة العربية
Neutrino oscillation physics has entered a new precision era, which poses major challenges to the level of control and diagnostics of the neutrino beams. In this paper, we review the design of high-precision beams, their current limitations, and the latest techniques envisaged to overcome such limits. We put emphasis on monitored neutrino beams and advanced diagnostics to determine the flux and flavor of the neutrinos produced at the source at the per-cent level. We also discuss ab-initio measurements of the neutrino energy -- i.e. measurements performed without relying on the event reconstruction at the neutrino detector -- to remove any flux-induced bias in the determination of the cross sections.
The three-flavor neutrino oscillation paradigm is well established in particle physics thanks to the crucial contribution of accelerator neutrino beam experiments. In this paper we review the most important contributions of these experiments to the p
The first phase of the long-baseline neutrino experiment, LBNE10, will use a broadband, high-energy neutrino beam with a 10-kt liquid argon TPC at 1300 km to study neutrino oscillation. In this paper, we describe potential upgrades to LBNE10 that use
Neutrino beams at from high-energy proton accelerators have been instrumental discovery tools in particle physics. Neutrino beams are derived from the decays of charged pi and K mesons, which in turn are created from proton beams striking thick nucle
Lorentz symmetry is a fundamental space-time symmetry underlying the Standard Model of particle physics and gravity. However, unified theories, such as string theory, allow for violation of this symmetry. Thus, the discovery of Lorentz symmetry viola
Neutrino beams obtained from proton accelerators were first operated in 1962. Since then, neutrino beams have been intensively used in particle physics and evolved in many different ways. We describe the characteristics of various neutrino beams, rel