ﻻ يوجد ملخص باللغة العربية
Electrides are an emerging class of materials with highly-localized electrons in the interstices of a crystal that behave as anions. The presence of these unusual interstitial quasi-atom (ISQ) electrons leads to interesting physical and chemical properties, and wide potential applications for this new class of materials. Crystal defects often have a crucial influence on the properties of materials. Introducing impurities has been proved to be an effective approach to improve the properties of a material and to expand its applications. However, the interactions between the anionic ISQs and the crystal defects in electrides are as yet unknown. Here, dense FCC-Li was employed as an archetype to explore the interplay between anionic ISQs and interstitial impurity atoms in this electride. This work reveals a strong coupling among the interstitial impurity atoms, the ISQs, and the matrix Li atoms near to the defects. This complex interplay and interaction mainly manifest as the unexpected tetrahedral interstitial occupation of impurity atoms and the enhancement of electron localization in the interstices. Moreover, the Be impurity occupying the octahedral interstice shows the highest negative charge state (Be8-) discovered thus far. These results demonstrate the rich chemistry and physics of this emerging material, and provide a new basis for enriching their variants for a wide range of applications.
Defects are inevitably present in two-dimensional (2D) materials and usually govern their various properties. Here a comprehensive density functional theory-based investigation of 7 kinds of point defects in a recently produced {gamma} allotrope of 2
The formation energy and local magnetic moment of a series of point defects in CaB$_6 $ are computed using a supercell approach within the generalized gradient approximation to density functional theory. Based on these results, speculations are made
Close-packed chalcogenide spinels, such as MgSc$_2$Se$_4$, MgIn$_2$S$_4$ and MgSc$_2$S$_4$, show potential as solid electrolytes in Mg batteries, but are affected by non-negligible electronic conductivity, which contributes to self-discharge when use
Optically and magnetically active point defects in semiconductors are interesting platforms for the development of solid-state quantum technologies. Their optical properties are usually probed by measuring photoluminescence spectra, which provide inf
We propose a di-interstitial model for the P6 center commonly observed in ion implanted silicon. The di-interstitial structure and transition paths between different defect orientations can explain the thermally activated transition of the P6 center