ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal-Insulator Transition and Emergent Gapped Phase in the Surface-Doped 2D Semiconductor 2H-MoTe$_2$

249   0   0.0 ( 0 )
 نشر من قبل Yan Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificially created two-dimensional (2D) interfaces or structures are ideal for seeking exotic phase transitions due to their highly tunable carrier density and interfacially enhanced many-body interactions. Here, we report the discovery of a metal-insulator transition (MIT) and an emergent gapped phase in the metal-semiconductor interface that is created in 2H-MoTe$_2$ via alkali-metal deposition. Using angle-resolved photoemission spectroscopy, we found that the electron-phonon coupling is strong at the interface as characterized by a clear observation of replica shake-off bands. Such strong electron-phonon coupling interplays with disorder scattering, leading to an Anderson localization of polarons which could explain the MIT. The domelike emergent gapped phase could then be attributed to a polaron extended state or phonon-mediated superconductivity. Our results demonstrate the capability of alkali-metal deposition as an effective method to enhance the many-body interactions in 2D semiconductors. The surface-doped 2H-MoTe$_2$ is a promising candidate for realizing polaronic insulator and high-$T_c$ superconductivity.



قيم البحث

اقرأ أيضاً

162 - S. Lupi , D. Nicoletti , O. Limaj 2009
By studying the optical conductivity of BSLCO and YCBCO, we show that the metal-to-insulator transition (MIT) in these hole-doped cuprates is driven by the opening of a small gap at low T in the far infrared. Its width is consistent with the observat ions of Angle-Resolved Photoemission Spectroscopy in other cuprates, along the nodal line of the k-space. The gap forms as the Drude term turns into a far-infrared absorption, whose peak frequency can be approximately predicted on the basis of a Mott-like transition. Another band in the mid infrared softens with doping but is less sensitive to the MIT.
Electron tunneling experiments are used to probe Coulomb correlation effects in the single-particle density-of-states (DOS) of boron-doped silicon crystals near the critical density of the metal-insulator transition (MIT). At low energies, a DOS meas urement distinguishes between insulating and metallic samples with densities 10 to 15 % on either side of the MIT. However, at higher energies the DOS of both insulators and metals show a common behavior, increasing roughly as the square-root of energy. The observed characteristics of the DOS can be understood using a classical treatment of Coulomb interactions combined with a phenomenological scaling ansatz to describe the length-scale dependence of the dielectric constant as the MIT is approached from the insulating side.
We report the synthesis, crystal structure, physical properties, and first-principles calculations of a vanadium-based oxytelluride Rb$_{1-delta}$V$_2$Te$_2$O ($deltaapprox0.2$). The crystal structure bears two-dimensional V$_2$O square nets sandwich ed with tellurium layers, mimicking the structural motifs of cuprate and iron-based superconductors. The material exhibits metallic conductivity with dominant hole-type charge carriers. A weak metal-to-metal transition takes place at $sim$100 K, which is conformably characterized by a slight kink/hump in the electrical resistivity, jumps in the Hall and Seebeck coefficients, a minute drop in the magnetic susceptibility, and a small peak in the heat capacity. Neither Bragg-peak splitting nor superlattice reflections can be detected within the resolution of conventional x-ray diffractions. The band-structure calculations show that V-3$d$ orbitals dominate the electronic states at around Fermi energy where a $d_{yz}/d_{xz}$ orbital polarization shows up. There are three Fermi-surface sheets that seem unfavorable for nesting. Our results suggest an orbital or spin-density-wave order for the low-temperature state and, upon suppression of the competing order, emergence of superconductivity could be expected.
We investigated the superconducting gap structure of SrNi$_2$P$_{2}$ ($T_c$=1.4 K) via low-temperature magneto-thermal conductivity $kappa(T,H)$ measurements. Zero field thermal conductivity $kappa$ decreases exponentially $kappa propto$ exp($-aT_c/T $) with $a$=1.5, in accord with the BCS theory, and rolls over to a phonon-like $kappapropto T^3$ behavior at low temperature, similar to a number of conventional s-wave superconductors. In addition, we observed a concave field dependence of the residual linear term $kappa_0(H)/T$. These facts strongly rule out the presence of nodes in the superconducting energy gap of SrNi$_2$P$_{2}$. Together with a fully gapped Fermi surface in the superconducting state of BaNi$_2$As$_{2}$ ($T_c$=0.6-0.7 K), demonstrated in our recent work, these results lead us to postulate that fully gapped superconductivity is a universal feature of Ni-based pnictide superconductors.
We have observed a metal-insulator transition of a quasi-two dimensional electronic system in transition metal dichalcogenide $2H$-TaSe$_2$ caused by doping iron. The sheet resistance of $2H$-Fe$_x$TaSe$_2$ ($0 leq x leq 0.120$) single crystals rises about $10^6$ times with the increasing of $x$ at the lowest temperature. We investigated the temperature dependence of the resistance and found a metal-insulator transition with a critical sheet resistance $11.7 pm 5.4$ k$rm{Omega}$. The critical exponent of the localization length $ u$ is estimated $0.31 pm 0.18$. The values of the critical sheet resistance and $ u$ are accordant to those of the textit{chiral unitary class} (less than $h/1.49e^2=17.3$ k$rm{Omega}$ and $0.35 pm 0.03$, respectively). We suggest that $2H$-Fe$_x$TaSe$_2$ is classified as the chiral unitary class, not as standard unitary class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا