ﻻ يوجد ملخص باللغة العربية
B-doped $delta$-layers were fabricated in Si(100) using BCl$_{3}$ as a dopant precursor in ultrahigh vacuum. BCl$_{3}$ adsorbed readily at room temperature, as revealed by scanning tunneling microscopy (STM) imaging. Annealing at elevated temperatures facilitated B incorporation into the Si substrate. Secondary ion mass spectrometry (SIMS) depth profiling demonstrated a peak B concentration $>$ 1.2(1) $times$ 10$^{21}$ cm$^{-3}$ with a total areal dose of 1.85(1) $times$ 10$^{14}$ cm$^{-2}$ resulting from a 30 L BCl$_{3}$ dose at 150 $^{circ}$C. Hall bar measurements of a similar sample were performed at 3.0 K revealing a sheet resistance of $R_{mathrm{s}}$ = 1.91 k$Omegasquare^{-1}$, a hole concentration of $n$ = 1.90 $times$ 10$^{14}$ cm$^{-2}$ and a hole mobility of $mu$ = 38.0 cm$^{2}$V$^{-1}$s$^{-1}$ without performing an incorporation anneal. Further, the conductivity of several B-doped $delta$-layers showed a log dependence on temperature suggestive of a two-dimensional system. Selective-area deposition of BCl$_{3}$ was also demonstrated using both H- and Cl-based monatomic resists. In comparison to a dosed area on bare Si, adsorption selectivity ratios for H and Cl resists were determined by SIMS to be 310(10):1 and 1529(5):1, respectively, further validating the use of BCl$_{3}$ as a dopant precursor for atomic precision fabrication of acceptor-doped devices in Si.
Two-dimensional crystals are an important class of materials for novel physics, chemistry, and engineering. Germanane (GeH), the germanium-based analogue of graphane (CH), is of particular interest due to its direct band gap and spin-orbit coupling.
We report a detailed study of surface and interface properties of pulsed-laser deposited NiMnSb films on Si (100) substrate as a function of film thickness. As the thickness of films is reduced below 35 nm formation of a porous layer is observed. Por
Area-selective atomic layer deposition is a key technology for modern microelectronics as it eliminates alignment errors inherent to conventional approaches by enabling material deposition only in specific areas. Typically, the selectivity originates
The charge ordered La$_{1/3}$Sr$_{2/3}$FeO$_{3-delta}$ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M{o}ssbauer, and polarised neutron studies. A complex scenario of short range charge and magnetic ordering
We introduce a simple method of an MgB2 film preparation using sequential electron-beam evaporation of B-Mg two-layer (followed by in-situ annealing) on the NbN buffered Si(100) substrate. The Transmission Electron Microscopy analyses confirm a growt