ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetopause reconnection and indents induced by foreshock turbulence

142   0   0.0 ( 0 )
 نشر من قبل Li-Jen Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on global hybrid simulation results, we predict that foreshock turbulence can reach the magnetopause and lead to reconnection as well as Earth-sized indents. Both the interplanetary magnetic field (IMF) and solar wind are constant in our simulation, and hence all dynamics are generated by foreshock instabilities. The IMF in the simulation is mostly Sun-Earth aligned with a weak northward and zero dawn-dusk component, such that subsolar magnetopause reconnection is not expected without foreshock turbulence modifying the magnetosheath fields. We show a reconnection example to illustrate that the turbulence can create large magnetic shear angles across the magnetopause to induce local bursty reconnection. Magnetopause reconnection and indents developed from the impact of foreshock turbulence can potentially contribute to dayside loss of planetary plasmas.



قيم البحث

اقرأ أيضاً

Data from the NASA Magnetospheric Multiscale (MMS) mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earths magnetosphere and the solar wind (the magnetopause). High-resolution measurements of plasma s, electric and magnetic fields, and waves are used to identify highly localized (~15 electron Debye lengths) standing wave structures with large electric-field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory dissipation, which appears as alternatingly positive and negative values of J dot E (dissipation). For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the EDR. For larger guide fields the structures also occur near the reconnection x-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide-field-aligned electrons at the x-line).
We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnec ting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earths dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earths polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.
We analyze the development and influence of turbulence in three-dimensional particle-in-cell simulations of guide-field magnetic reconnection at the magnetopause with parameters based on observations of an electron diffusion region by the Magnetosphe ric Multiscale (MMS) mission. Along the separatrices the turbulence is a variant of the lower hybrid drift instability (LHDI) that produces electric field fluctuations with amplitudes much greater than the reconnection electric field. The turbulence controls the scale length of the density and current profiles while enabling significant transport across the magnetopause despite the electrons remaining frozen-in to the magnetic field. Near the X-line the electrons are not frozen-in and the turbulence, which differs from the LHDI, makes a significant net contribution to the generalized Ohms law through an anomalous viscosity. The characteristics of the turbulence and associated particle transport are consistent with fluctuation amplitudes in the MMS observations. However, for this event the simulations suggest that the MMS spacecraft were not close enough to the core of the electron diffusion region to identify the region where anomalous viscosity is important.
Foreshock disturbances -- large-scale (~1000 km to >30,000 km), transient (~5-10 per day - lasting ~10s of seconds to several minutes) structures [1,2] - generated by suprathermal (>100 eV to 100s of keV) ions [3,4] arise upstream of Earths bow shock formed by the solar wind colliding with the Earths magnetosphere. They have recently been found to accelerate ions to energies of several keV [5,6]. Although electrons in Saturns high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV) [7], it has hitherto been thought impossible to accelerate electrons at the much weaker (M < 20) Earths bow shock beyond a few 10s of keV [8]. Here we report observations of electrons energized by foreshock disturbances to energies up to at least ~300 keV. Although such energetic electrons have been previously reported, their presence has been attributed to escaping magnetospheric particles [9,10] or solar events [11]. These relativistic electrons are not associated with any solar activity nor are they of magnetospheric origin. Further, current theories of ion acceleration in foreshock disturbances cannot account for electrons accelerated to the observed relativistic energies [12-17]. These electrons are clearly coming from the disturbances, leaving us with no explanation as to their origin.
132 - G. Lapenta , J. Berchem , M. Zhou 2017
MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earths magnetopause. In this paper, we re-exam ine the origin of the crescent-shaped distributions in the light of our new finding that ions and electrons are drifting in opposite directions when displayed in magnetopause boundary-normal coordinates. Therefore, ExB drifts cannot cause the crescent shapes. We performed a high-resolution multi-scale simulation capturing sub-electron skin depth scales. The results suggest that the crescent-shaped distributions are caused by meandering orbits without necessarily requiring any additional processes found at the magnetopause such as the highly asymmetric magnetopause ambipolar electric field. We use an adiabatic Hamiltonian model of particle motion to confirm that conservation of canonical momentum in the presence of magnetic field gradients causes the formation of crescent shapes without invoking asymmetries or the presence of an ExB drift. An important consequence of this finding is that we expect crescent-shaped distributions also to be observed in the magnetotail, a prediction that MMS will soon be able to test.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا