ﻻ يوجد ملخص باللغة العربية
Inspired by the discovery of the spin-$frac{1}{2}$ doubly charmed baryon $Xi_{cc}^{++}$ and the subsequent theoretical studies of its magnetic moments, we study the magnetic moments of its spin-$frac{3}{2}$ heavy quark spin symmetry counterparts, up to the next-to-leading order in covariant baryon chiral perturbation theory (BChPT) with the extended-on-mass-shell renormalization (EOMS) scheme. With the tree-level contributions fixed by the quark model while the two low energy constants (LECs) $C$ and $H$ controlling the loop contributions determined in two ways: the quark model (case 1) and lattice QCD simulations together with the quark model (case 2), we study the quark mass dependence of the magnetic moments and compare them with the predictions of the heavy baryon chiral perturbation theory (HB ChPT). It is shown that the difference is sizable in case 1, but not in case 2 due to the smaller LECs $C$ and $H$, similar to the case of spin-$frac{1}{2}$ doubly charmed baryons. Second, we predict the magnetic moments of the spin-$frac{3}{2}$ doubly charmed baryons and compare them with those of other approaches. The predicted magnetic moments in case 2 for the spin-$frac{3}{2}$ doubly charmed baryons are closer to those of other approaches. In addition, the large differences in case 1 and case 2 for the predicted magnetic moments may indicate the inconsistency between the quark model and the lattice QCD simulations, which should be checked by future experimental or more lattice QCD data.
We have systematically investigated the magnetic moments of spin-$frac{1}{2}$ doubly charmed baryons in the framework of the heavy baryon chiral perturbation theory. In this paper, one loop corrections with intermediate spin-$frac{1}{2}$ and spin-$fr
We calculate the octet baryon magnetic moments in covariant baryon chiral perturbation theory with the extended-on-mass-shell renormalization scheme up to next-to-next-to-leading order. At this order, there are nine low-energy constants, which cannot
The chiral corrections to the magnetic moments of the spin-$frac{1}{2}$ doubly charmed baryons are systematically investigated up to next-to-next-to-leading order with heavy baryon chiral perturbation theory (HBChPT). The numerical results are calcul
We obtain leading- and next-to-leading order predictions of chiral perturbation theory for several prominent moments of nucleon structure functions. These free-parameter free results turn out to be in overall agreement with the available empirical in
We investigate the electromagnetic transitions of the singly charmed baryons with spin 3/2, based on a pion mean-field approach, also known as the chiral quark-soliton model, taking into account the rotational $1/N_c$ corrections and the effects of f