ﻻ يوجد ملخص باللغة العربية
In this work we revisit the description of dynamics based on the concepts of metabasins and activation in mildly supercooled liquids via the analysis of the dynamics of a paradigmatic glass former between its onset temperature $T_{o}$ and mode-coupling temperature $T_{c}$. First, we provide measures that demonstrate that the onset of glassiness is indeed connected to the landscape, and that metabasin waiting time distributions are so broad that the system can remain stuck in a metabasin for times that exceed $tau_alpha$ by orders of magnitude. We then reanalyze the transitions between metabasins, providing several indications that the standard picture of activated dynamics in terms of traps does not hold in this regime. Instead, we propose that here activation is principally driven by entropic instead of energetic barriers. In particular, we illustrate that activation is not controlled by the hopping of high energetic barriers, and should more properly be interpreted as the entropic selection of nearly barrierless but rare pathways connecting metabasins on the landscape.
We present a detailed investigation of the wave vector dependence of collective atomic motion in Au49Cu26.9Si16.3Ag5.5Pd2.3 and Pd42.5Cu27Ni9.5P21 supercooled liquids close to the glass transition temperature. Using x-ray photon correlation spectrosc
Particle motion of a Lennard-Jones supercooled liquid near the glass transition is studied by molecular dynamics simulations. We analyze the wave vector dependence of relaxation times in the incoherent self scattering function and show that at least
A theoretical treatment of deeply supercooled liquids is difficult because their properties emerge from spatial inhomogeneities that are self-induced, transient, and nanoscopic. I use computer simulations to analyse self-induced static and dynamic he
The range of the magnitude of the liquid viscosity as a function of the temperature (T) is one of the most impressive of any physical property, changing by approximately 17 orders of magnitude from its extrapolated value at infinite temperature to th
Within the so-called no-mans land between about 150 and 235 K, crystallization of bulk water is inevitable. The glasslike freezing and a liquid-to-liquid transition of water, predicted to occur in this region, can be investigated by confining water i