ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging

83   0   0.0 ( 0 )
 نشر من قبل Tao Huang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In coded aperture snapshot spectral imaging (CASSI) system, the real-world hyperspectral image (HSI) can be reconstructed from the captured compressive image in a snapshot. Model-based HSI reconstruction methods employed hand-crafted priors to solve the reconstruction problem, but most of which achieved limited success due to the poor representation capability of these hand-crafted priors. Deep learning based methods learning the mappings between the compressive images and the HSIs directly achieved much better results. Yet, it is nontrivial to design a powerful deep network heuristically for achieving satisfied results. In this paper, we propose a novel HSI reconstruction method based on the Maximum a Posterior (MAP) estimation framework using learned Gaussian Scale Mixture (GSM) prior. Different from existing GSM models using hand-crafted scale priors (e.g., the Jeffreys prior), we propose to learn the scale prior through a deep convolutional neural network (DCNN). Furthermore, we also propose to estimate the local means of the GSM models by the DCNN. All the parameters of the MAP estimation algorithm and the DCNN parameters are jointly optimized through end-to-end training. Extensive experimental results on both synthetic and real datasets demonstrate that the proposed method outperforms existing state-of-the-art methods. The code is available at https://see.xidian.edu.cn/faculty/wsdong/Projects/DGSM-SCI.htm.

قيم البحث

اقرأ أيضاً

Snapshot compressive imaging (SCI) aims to record three-dimensional signals via a two-dimensional camera. For the sake of building a fast and accurate SCI recovery algorithm, we incorporate the interpretability of model-based methods and the speed of learning-based ones and present a novel dense deep unfolding network (DUN) with 3D-CNN prior for SCI, where each phase is unrolled from an iteration of Half-Quadratic Splitting (HQS). To better exploit the spatial-temporal correlation among frames and address the problem of information loss between adjacent phases in existing DUNs, we propose to adopt the 3D-CNN prior in our proximal mapping module and develop a novel dense feature map (DFM) strategy, respectively. Besides, in order to promote network robustness, we further propose a dense feature map adaption (DFMA) module to allow inter-phase information to fuse adaptively. All the parameters are learned in an end-to-end fashion. Extensive experiments on simulation data and real data verify the superiority of our method. The source code is available at https://github.com/jianzhangcs/SCI3D.
319 - Ziyi Meng , Zhenming Yu , Kun Xu 2021
We consider using {bfem untrained neural networks} to solve the reconstruction problem of snapshot compressive imaging (SCI), which uses a two-dimensional (2D) detector to capture a high-dimensional (usually 3D) data-cube in a compressed manner. Vari ous SCI systems have been built in recent years to capture data such as high-speed videos, hyperspectral images, and the state-of-the-art reconstruction is obtained by the deep neural networks. However, most of these networks are trained in an end-to-end manner by a large amount of corpus with sometimes simulated ground truth, measurement pairs. In this paper, inspired by the untrained neural networks such as deep image priors (DIP) and deep decoders, we develop a framework by integrating DIP into the plug-and-play regime, leading to a self-supervised network for spectral SCI reconstruction. Extensive synthetic and real data results show that the proposed algorithm without training is capable of achieving competitive results to the training based networks. Furthermore, by integrating the proposed method with a pre-trained deep denoising prior, we have achieved state-of-the-art results. {Our code is available at url{https://github.com/mengziyi64/CASSI-Self-Supervised}.}
104 - Xin Yuan , Yang Liu , Jinli Suo 2020
Snapshot compressive imaging (SCI) aims to capture the high-dimensional (usually 3D) images using a 2D sensor (detector) in a single snapshot. Though enjoying the advantages of low-bandwidth, low-power and low-cost, applying SCI to large-scale proble ms (HD or UHD videos) in our daily life is still challenging. The bottleneck lies in the reconstruction algorithms; they are either too slow (iterative optimization algorithms) or not flexible to the encoding process (deep learning based end-to-end networks). In this paper, we develop fast and flexible algorithms for SCI based on the plug-and-play (PnP) framework. In addition to the widely used PnP-ADMM method, we further propose the PnP-GAP (generalized alternating projection) algorithm with a lower computational workload and prove the convergence of PnP-GAP under the SCI hardware constraints. By employing deep denoising priors, we first time show that PnP can recover a UHD color video ($3840times 1644times 48$ with PNSR above 30dB) from a snapshot 2D measurement. Extensive results on both simulation and real datasets verify the superiority of our proposed algorithm. The code is available at https://github.com/liuyang12/PnP-SCI.
The deep learning methods have achieved attractive performance in dynamic MR cine imaging. However, all of these methods are only driven by the sparse prior of MR images, while the important low-rank (LR) prior of dynamic MR cine images is not explor ed, which limits the further improvements on dynamic MR reconstruction. In this paper, a learned singular value thresholding (Learned-SVT) operation is proposed to explore deep low-rank prior in dynamic MR imaging for obtaining improved reconstruction results. In particular, we come up with two novel and distinct schemes to introduce the learnable low-rank prior into deep network architectures in an unrolling manner and a plug-and-play manner respectively. In the unrolling manner, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed SLR-Net. The SLR-Net is defined over a deep network flow graph, which is unrolled from the iterative procedures in the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a sparse and low-rank based dynamic MRI model. In the plug-and-play manner, we present a plug-and-play LR network module that can be easily embedded into any other dynamic MR neural networks without changing the network paradigm. Experimental results show that both schemes can further improve the state-of-the-art CS methods, such as k-t SLR, and sparsity-driven deep learning-based methods, such as DC-CNN and CRNN, both qualitatively and quantitatively.
178 - Xin Yuan 2020
Sampling high-dimensional images is challenging due to limited availability of sensors; scanning is usually necessary in these cases. To mitigate this challenge, snapshot compressive imaging (SCI) was proposed to capture the high-dimensional (usually 3D) images using a 2D sensor (detector). Via novel optical design, the {em measurement} captured by the sensor is an encoded image of multiple frames of the 3D desired signal. Following this, reconstruction algorithms are employed to retrieve the high-dimensional data. Though various algorithms have been proposed, the total variation (TV) based method is still the most efficient one due to a good trade-off between computational time and performance. This paper aims to answer the question of which TV penalty (anisotropic TV, isotropic TV and vectorized TV) works best for video SCI reconstruction? Various TV denoising and projection algorithms are developed and tested for video SCI reconstruction on both simulation and real datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا