ترغب بنشر مسار تعليمي؟ اضغط هنا

Inductive Relation Prediction by BERT

135   0   0.0 ( 0 )
 نشر من قبل Hanwen Zha
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Relation prediction in knowledge graphs is dominated by embedding based methods which mainly focus on the transductive setting. Unfortunately, they are not able to handle inductive learning where unseen entities and relations are present and cannot take advantage of prior knowledge. Furthermore, their inference process is not easily explainable. In this work, we propose an all-in-one solution, called BERTRL (BERT-based Relational Learning), which leverages pre-trained language model and fine-tunes it by taking relation instances and their possible reasoning paths as training samples. BERTRL outperforms the SOTAs in 15 out of 18 cases in both inductive and transductive settings. Meanwhile, it demonstrates strong generalization capability in few-shot learning and is explainable.



قيم البحث

اقرأ أيضاً

Relation extraction (RE) aims to predict a relation between a subject and an object in a sentence, while knowledge graph link prediction (KGLP) aims to predict a set of objects, O, given a subject and a relation from a knowledge graph. These two prob lems are closely related as their respective objectives are intertwined: given a sentence containing a subject and an object o, a RE model predicts a relation that can then be used by a KGLP model together with the subject, to predict a set of objects O. Thus, we expect object o to be in set O. In this paper, we leverage this insight by proposing a multi-task learning approach that improves the performance of RE models by jointly training on RE and KGLP tasks. We illustrate the generality of our approach by applying it on several existing RE models and empirically demonstrate how it helps them achieve consistent performance gains.
141 - Po-Ting Lai , Zhiyong Lu 2021
A biomedical relation statement is commonly expressed in multiple sentences and consists of many concepts, including gene, disease, chemical, and mutation. To automatically extract information from biomedical literature, existing biomedical text-mini ng approaches typically formulate the problem as a cross-sentence n-ary relation-extraction task that detects relations among n entities across multiple sentences, and use either a graph neural network (GNN) with long short-term memory (LSTM) or an attention mechanism. Recently, Transformer has been shown to outperform LSTM on many natural language processing (NLP) tasks. In this work, we propose a novel architecture that combines Bidirectional Encoder Representations from Transformers with Graph Transformer (BERT-GT), through integrating a neighbor-attention mechanism into the BERT architecture. Unlike the original Transformer architecture, which utilizes the whole sentence(s) to calculate the attention of the current token, the neighbor-attention mechanism in our method calculates its attention utilizing only its neighbor tokens. Thus, each token can pay attention to its neighbor information with little noise. We show that this is critically important when the text is very long, as in cross-sentence or abstract-level relation-extraction tasks. Our benchmarking results show improvements of 5.44% and 3.89% in accuracy and F1-measure over the state-of-the-art on n-ary and chemical-protein relation datasets, suggesting BERT-GT is a robust approach that is applicable to other biomedical relation extraction tasks or datasets.
In this paper, we propose a novel model compression approach to effectively compress BERT by progressive module replacing. Our approach first divides the original BERT into several modules and builds their compact substitutes. Then, we randomly repla ce the original modules with their substitutes to train the compact modules to mimic the behavior of the original modules. We progressively increase the probability of replacement through the training. In this way, our approach brings a deeper level of interaction between the original and compact models. Compared to the previous knowledge distillation approaches for BERT compression, our approach does not introduce any additional loss function. Our approach outperforms existing knowledge distillation approaches on GLUE benchmark, showing a new perspective of model compression.
Adversarial attacks for discrete data (such as texts) have been proved significantly more challenging than continuous data (such as images) since it is difficult to generate adversarial samples with gradient-based methods. Current successful attack m ethods for texts usually adopt heuristic replacement strategies on the character or word level, which remains challenging to find the optimal solution in the massive space of possible combinations of replacements while preserving semantic consistency and language fluency. In this paper, we propose textbf{BERT-Attack}, a high-quality and effective method to generate adversarial samples using pre-trained masked language models exemplified by BERT. We turn BERT against its fine-tuned models and other deep neural models in downstream tasks so that we can successfully mislead the target models to predict incorrectly. Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage, while the generated adversarial samples are fluent and semantically preserved. Also, the cost of calculation is low, thus possible for large-scale generations. The code is available at https://github.com/LinyangLee/BERT-Attack.
133 - Lin Sun , Jiquan Wang , Kai Zhang 2021
Recently multimodal named entity recognition (MNER) has utilized images to improve the accuracy of NER in tweets. However, most of the multimodal methods use attention mechanisms to extract visual clues regardless of whether the text and image are re levant. Practically, the irrelevant text-image pairs account for a large proportion in tweets. The visual clues that are unrelated to the texts will exert uncertain or even negative effects on multimodal model learning. In this paper, we introduce a method of text-image relation propagation into the multimodal BERT model. We integrate soft or hard gates to select visual clues and propose a multitask algorithm to train on the MNER datasets. In the experiments, we deeply analyze the changes in visual attention before and after the use of text-image relation propagation. Our model achieves state-of-the-art performance on the MNER datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا