ﻻ يوجد ملخص باللغة العربية
We continue to study the optical properties of the solar gravitational lens (SGL). The aim is prospective applications of the SGL for imaging purposes. We investigate the solution of Maxwells equations for the electromagnetic (EM) field, obtained on the background of a static gravitational field of the Sun. We now treat the Sun as an extended body with a gravitational field that can be described using an infinite series of gravitational multipole moments. Studying the propagation of monochromatic EM waves in this extended solar gravitational field, we develop a wave-optical treatment of the SGL that allows us to study the caustics formed in an image plane in the SGLs strong interference region. We investigate the EM field in several important regions, namely i) the area in the inner part of the caustic and close to the optical axis, ii) the region outside the caustic, and iii) the region in the immediate vicinity of the caustic, especially around its cusps and folds. We show that in the first two regions the physical behavior of the EM field may be understood using the method of stationary phase. However, in the immediate vicinity of the caustic the method of stationary phase is inadequate and a wave-optical treatment is necessary. Relying on the angular eikonal method, we develop a new approach to describe the EM field accurately in all regions, including the immediate vicinity of the caustics and especially near the cusps and folds. The method allows us to investigate the EM field in this important region, which is characterized by rapidly oscillating behavior. Our results are new and can be used to describe gravitational lensing by realistic astrophysical objects, such as stars, spiral and elliptical galaxies.
We continue our study of the optical properties of the solar gravitational lens (SGL). Taking the next step beyond representing it as an idealized monopole, we now characterize the gravitational field of the Sun using an infinite series of multipole
We study the optical properties of the solar gravitational lens (SGL) while treating the Sun as an extended, axisymmetric and rotating body. The gravitational field of the Sun is represented using a set of zonal harmonics. We develop an analytical de
We investigate the optical properties of the solar gravitational lens (SGL) with respect to an extended source located at a large but finite distance from the Sun. The static, spherically symmetric gravitational field of the Sun is modeled within the
We study the optical properties of an oblate gravitational lens, such as the solar gravitational lens, which, in addition to a monopole, is characterized by the presence of a small quadrupole zonal harmonic. We obtain a new type of diffraction integr
We continue our investigation of the optical properties of the solar gravitational lens (SGL). We treat the Sun as an extended axisymmetric body and model its gravitational field using zonal harmonics. We consider a point source that is positioned at