ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra and Magellan/FIRE follow-up observations of PSO167-13: an X-ray weak QSO at $z=6.515$

69   0   0.0 ( 0 )
 نشر من قبل Fabio Vito
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of hundreds of QSOs in the first Gyr of the Universe powered by already grown SMBHs challenges our knowledge of SMBH formation. In particular, investigations of $z>6$ QSOs presenting notable properties can provide unique information on the physics of fast SMBH growth in the early universe. We present the results of follow-up observations of the $z=6.515$ radio-quiet QSO PSO167-13, which is interacting with a close companion galaxy. The PSO167-13 system has been recently proposed to host the first heavily obscured X-ray source at high redshift. We observed PSO167-13 with Chandra/ACIS-S (177 ks), and obtained new spectroscopic observations (7.2 h) with Magellan/FIRE. No significant X-ray emission is detected from the PSO167-13 system, suggesting that the obscured X-ray source previously tentatively detected was either due to a strong background fluctuation or is highly variable. The upper limit (90% confidence level) on the X-ray emission of PSO167-13 ($L_{2-10,mathrm{keV}}<8.3times10^{43},mathrm{erg s^{-1}}$) is the lowest available for a $z>6$ QSO. The ratio between the X-ray and UV luminosity of $alpha_{ox}<-1.95$ makes PSO167-13 a strong outlier from the $alpha_{ox}-L_{UV}$ and $L_X-L_{mathrm{bol}}$ relations. In particular, its X-ray emission is $>6$ times weaker than the expectation based on its UV luminosity. The new Magellan/FIRE spectrum of PSO167-13 is strongly affected by the unfavorable sky conditions, but the tentatively detected C IV and Mg II emission lines appear strongly blueshifted. The most plausible explanations for the X-ray weakness of PSO167-13 are intrinsic weakness or small-scale absorption by Compton-thick material. The possible strong blueshift of its emission lines hints at the presence of nuclear winds, which could be related to its X-ray weakness.



قيم البحث

اقرأ أيضاً

We present the discovery and properties of DESJ014132.4-542749.9 (DES0141-54), a new powerful radio-loud active galactic nucleus (AGN) in the early Universe (z=5.0). It was discovered by cross-matching the first data release of the Dark Energy Survey (DES DR1) with the Sidney University Molonglo Survey (SUMSS) radio catalog at 0.843 GHz. This object is the first radio-loud AGN at high redshift discovered in the DES. The radio properties of DES0141-54, namely its very large radio-loudness (R>10$^{4}$), the high radio luminosity (L$_{0.8 GHz}$=1.73$times$10$^{28}$ W Hz$^{-1}$), and the flatness of the radio spectrum ($alpha$=0.35) up to very high frequencies (120 GHz in the sources rest frame), classify this object as a blazar, meaning, a radio-loud AGN observed along the relativistic jet axis. However, the X--ray luminosity of DESJ0141-54 is much lower compared to those of the high redshift (z$geq$4.5) blazars discovered so far. Moreover its X-ray-to-radio luminosity ratio (log($frac{L_{[0.5-10]keV}}{L_{1.4GHz}}$)=9.96$pm$0.30 Hz) is small also when compared to lower redshift blazars: only 2% of the low-z population has a similar ratio. By modeling the spectral energy distribution we found that this peculiar X--ray weakness and the powerful radio emission could be related to a particularly high value of the magnetic field. Finally, the mass of the central black hole is relatively small (M$_{BH}$ = 3-8 $times$10$^8$ M$_{odot}$) compared to other confirmed blazars at similar redshift, making DES0141-54 the radio-loud AGN that host the smallest supermassive black hole ever discovered at z$geq$5.
149 - O. Tibolla , S. Kaufmann , 2014
Context. The discovery of the unique source HESS J1507-622 in the very high energy (VHE) range (100 GeV-100 TeV) opened new possibilities to study the parent population of ultra-relativistic particles found in astrophysical sources and underlined the possibility of new scenarios/mechanisms crucial for understanding the underlying astrophysical processes in nonthermal sources. Aims. The follow-up X-ray (0.2 - 10 keV) observations on HESS J1507-622 are reported, and possibilities regarding the nature of the VHE source and that of the newly discovered X-ray sources are investigated. Methods.We obtained bservations with the X-ray satellites XMM-Newton and Chandra. Background corrections were applied to the data to search for extended diffuse emission. Since HESS J1507-622 covers a large part of the field of view of these instruments, blank-sky background fields were used. Results. The discovery of several new X-ray sources and a new, faint, extended X-ray source with a flux of ~6e-14 erg cm^-2 s^-1 is reported. Interestingly, a new, variable point-like X-ray source with a flux of ~8e-14 erg cm^-2 s^-1 appeared in the 2011 observation, which was not detected in the previous X-ray observations. Conclusions. The X-ray observations revealed a faint, extended X-ray source that may be a possible counterpart for HESS J1507-622. This source could be an X-ray pulsar wind nebula (PWN) remnant of the larger gamma-ray PWN, which is still bright in IC emission. Several interpretations are proposed to explain the newly detected variable X-ray source.
We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ~ 2 obtained with the FIRE spectrometer on the Magellan Baade telescope. The sample was selected from the WISP survey, which uses the near-infrared grism of the Hubb le Space Telescope Wide Field Camera 3 to detect emission-line galaxies over 0.3 < z < 2.3. Our FIRE follow-up spectroscopy (R~5000) over 1.0-2.5 micron permits detailed measurements of physical properties of the z~2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ~5-100 M_sun yr-1. We derive a median metallicity for the sample of ~0.45 Z_sun, and the estimated stellar masses range from ~10^8.5 - 10^9.5 M_sun. The average ionization parameters measured for the sample are typically much higher than what is found for local star-forming galaxies. We derive composite spectra from the FIRE sample, from which we infer typical nebular electron densities of ~100-400 cm^-3. Based on the location of the galaxies and composite spectra on BPT diagrams, we do not find evidence for significant AGN activity in the sample. Most of the galaxies as well as the composites are offset in the BPT diagram toward higher [O III]/H-beta at a given [N II]/H-alpha, in agreement with other observations of z > 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/H-beta versus [S II]/H-alpha diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which may contribute to the offset of the high-redshift galaxies from the local star-forming sequence in the [O III]/H-beta versus [N II]/H-alpha diagram. We speculate that the elevated nitrogen abundance could result from substantial numbers of Wolf-Rayet stars in starbursting galaxies at z~2. (Abridged)
Most violent and energetic processes in our universe, including mergers of compact objects, explosions of massive stars and extreme accretion events, produce copious amounts of X-rays. X-ray follow-up is an efficient tool for identifying transients b ecause (1) X-rays can quickly localize transients with large error circles, and (2) X-rays reveal the nature of transients that may not have unique signatures at other wavelengths. In this white paper, we identify key science questions about several extragalactic multi-messenger and multi-wavelength transients, and demonstrate how X-ray follow-up helps answer these questions
118 - L. Pavan , E. Bozzo , C. Ferrigno 2013
We studied the soft-X-ray emission of five hard-X sources: IGR J08262-3736, IGR J17354-3255, IGR J16328-4726, SAX J1818.6-1703 and IGR J17348-2045. These sources are: a confirmed supergiant high mass X-ray binary (IGR J08262-3736); candidates (IGR J1 7354-3255, IGR J16328- 4726) and confirmed (SAX J1818.6-1703) supergiant fast X-ray transients; IGR J17348-2045 is one of the as-yet unidentified objects discovered with INTEGRAL. Thanks to dedicated XMM-Newton observations, we obtained the first detailed soft X-ray spectral and timing study of IGR J08262-3736. The results obtained from the observations of IGR J17354-3255 and IGR J16328-4726 provided further support in favor of their association with the class of Supergiant Fast X-ray Transients. SAX J1818.6-1703, observed close to phase 0.5, was not detected by XMM-Newton, thus supporting the idea that this source reaches its lowest X-ray luminosity (~10^32 erg/s) around apastron. For IGR J17348-2045 we identified for the first time the soft X-ray counterpart and proposed the association with a close-by radio object, suggestive of an extragalactic origin. In this proceeding we discuss the results obtained from the XMM-Newton follow-up observations of all the five sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا