ﻻ يوجد ملخص باللغة العربية
The discovery of hundreds of QSOs in the first Gyr of the Universe powered by already grown SMBHs challenges our knowledge of SMBH formation. In particular, investigations of $z>6$ QSOs presenting notable properties can provide unique information on the physics of fast SMBH growth in the early universe. We present the results of follow-up observations of the $z=6.515$ radio-quiet QSO PSO167-13, which is interacting with a close companion galaxy. The PSO167-13 system has been recently proposed to host the first heavily obscured X-ray source at high redshift. We observed PSO167-13 with Chandra/ACIS-S (177 ks), and obtained new spectroscopic observations (7.2 h) with Magellan/FIRE. No significant X-ray emission is detected from the PSO167-13 system, suggesting that the obscured X-ray source previously tentatively detected was either due to a strong background fluctuation or is highly variable. The upper limit (90% confidence level) on the X-ray emission of PSO167-13 ($L_{2-10,mathrm{keV}}<8.3times10^{43},mathrm{erg s^{-1}}$) is the lowest available for a $z>6$ QSO. The ratio between the X-ray and UV luminosity of $alpha_{ox}<-1.95$ makes PSO167-13 a strong outlier from the $alpha_{ox}-L_{UV}$ and $L_X-L_{mathrm{bol}}$ relations. In particular, its X-ray emission is $>6$ times weaker than the expectation based on its UV luminosity. The new Magellan/FIRE spectrum of PSO167-13 is strongly affected by the unfavorable sky conditions, but the tentatively detected C IV and Mg II emission lines appear strongly blueshifted. The most plausible explanations for the X-ray weakness of PSO167-13 are intrinsic weakness or small-scale absorption by Compton-thick material. The possible strong blueshift of its emission lines hints at the presence of nuclear winds, which could be related to its X-ray weakness.
We present the discovery and properties of DESJ014132.4-542749.9 (DES0141-54), a new powerful radio-loud active galactic nucleus (AGN) in the early Universe (z=5.0). It was discovered by cross-matching the first data release of the Dark Energy Survey
Context. The discovery of the unique source HESS J1507-622 in the very high energy (VHE) range (100 GeV-100 TeV) opened new possibilities to study the parent population of ultra-relativistic particles found in astrophysical sources and underlined the
We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ~ 2 obtained with the FIRE spectrometer on the Magellan Baade telescope. The sample was selected from the WISP survey, which uses the near-infrared grism of the Hubb
Most violent and energetic processes in our universe, including mergers of compact objects, explosions of massive stars and extreme accretion events, produce copious amounts of X-rays. X-ray follow-up is an efficient tool for identifying transients b
We studied the soft-X-ray emission of five hard-X sources: IGR J08262-3736, IGR J17354-3255, IGR J16328-4726, SAX J1818.6-1703 and IGR J17348-2045. These sources are: a confirmed supergiant high mass X-ray binary (IGR J08262-3736); candidates (IGR J1