ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable spin-valley coupling in layered polar Dirac metals

262   0   0.0 ( 0 )
 نشر من قبل Masaki Kondo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In non-centrosymmetric metals, spin-orbit coupling (SOC) induces momentum-dependent spin polarization at the Fermi surfaces. This is exemplified by the valley-contrasting spin polarization in monolayer transition metal dichalcogenides (TMDCs) with in-plane inversion asymmetry. However, the valley configuration of massive Dirac fermions in TMDCs is fixed by the graphene-like structure, which limits the variety of spin-valley coupling. Here, we show that the layered polar metal BaMn$X_2$ ($X =$Bi, Sb) hosts tunable spin-valley-coupled Dirac fermions, which originate from the distorted $X$ square net with in-plane lattice polarization. We found that in spite of the larger SOC, BaMnBi$_2$ has approximately one-tenth the lattice distortion of BaMnSb$_2$, from which a different configuration of spin-polarized Dirac valleys is theoretically predicted. This was experimentally observed as a clear difference in the Shubnikov-de Haas oscillation at high fields between the two materials. The chemically tunable spin-valley coupling in BaMn$X_2$ makes it a promising material for various spin-valleytronic devices.

قيم البحث

اقرأ أيضاً

Unconventional features of relativistic Dirac/Weyl quasi-particles in topological materials are most evidently manifested in the 2D quantum Hall effect (QHE), whose variety is further enriched by their spin and/or valley polarization. Although its ex tension to three dimensions has been long-sought and inspired theoretical proposals, material candidates have been lacking. Here we have discovered valley-contrasting spin-polarized Dirac fermions in a multilayer form in bulk antiferromagnet BaMnSb$_2$, where the out-of-plane Zeeman-type spin splitting is induced by the in-plane inversion symmetry breaking and spin-orbit coupling (SOC) in the distorted Sb square net. Furthermore, we have observed well-defined quantized Hall plateaus together with vanishing interlayer conductivity at low temperatures as a hallmark of the half-integer QHE in a bulk form. The Hall conductance of each layer is found to be nearly quantized to $2(N+1/2)e^2/h$ with $N$ being the Landau index, which is consistent with two spin-polarized Dirac valleys protected by the strong spin-valley coupling.
Raman scattering measurements on BiFeO3 single crystals show an important coupling between the magnetic order and lattice vibrations. The temperature evolution of phonons shows that the lowest energy E and A1 phonon modes are coupled to the spin orde r up to the Neel temperature. Furthermore, low temperature anomalies associated with the spin re-orientation are observed simultaneously in both the E phonon and the magnon. These results suggest that magnetostriction plays an important role in BiFeO3.
Tailoring spin-orbit interactions and Coulomb repulsion are the key features to observe exotic physical phenomena such as magnetic anisotropy and topological spin texture at oxide interfaces. Our study proposes a novel platform for engineering the ma gnetism and spin-orbit coupling at LaMnO3/SrIrO3 (3d-5d oxide) interfaces by tuning the LaMnO3 growth conditions which controls the lattice displacement and spin-correlated interfacial coupling through charge transfer. We report on a tunable and enhanced interface-induced Rashba spin-orbit coupling and Elliot-Yafet spin relaxation mechanism in LaMnO3/SrIrO3 bilayer with change in the underlying magnetic order of LaMnO3. We also observed enhanced spin-orbit coupling strength in LaMnO3/SrIrO3 compared to previously reported SrIrO3 layers. The X-Ray spectroscopy measurement reveals the quantitative valence of Mn and their impact on charge transfer. Further, we performed angle-dependent magnetoresistance measurements, which show signatures of magnetic proximity effect in SrIrO3 while reflecting the magnetic order of LaMnO3. Our work thus demonstrates a new route to engineer the interface induced Rashba spin-orbit coupling and magnetic proximity effect in 3d-5d oxide interfaces which makes SrIrO3 an ideal candidate for spintronics applications.
Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving Dirac fermions that behave as massless relativistic particles. These Dirac fermions are responsible for achieving a number of nov el and exotic quantum phenomena in the topological insulators and for their potential applications in spintronics and quantum computations. It is thus essential to understand the electron dynamics of the Dirac fermions, i.e., how they interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling in these topological insulators and found that the electron-disorder interaction is the dominant factor in the scattering process. The Dirac fermion dynamics in Bi2(Te3-xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding the electron dynamics of the Dirac fermions in topological insulators and in engineering their surface state for fundamental studies and potential applications.
We present inelastic neutron scattering (INS) measurements of magnetic excitations in YbMnBi$_2$, which reveal features consistent with a direct coupling of magnetic excitations to Dirac fermions. In contrast with the large broadening of magnetic spe ctra observed in antiferromagnetic metals such as the iron pnictides, here the spin waves exhibit a small but resolvable intrinsic width, consistent with our theoretical analysis. The subtle manifestation of spin-fermion coupling is a consequence of the Dirac nature of the conduction electrons, including the vanishing density of states near the Dirac points. Accounting for the Dirac fermion dispersion specific to ymb leads to particular signatures, such as the nearly wave-vector independent damping observed in the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا