ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for cloud cores affected by shocked carbon chain chemistry in L1251

329   0   0.0 ( 0 )
 نشر من قبل Xunchuan Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We searched for shocked carbon chain chemistry (SCCC) sources with C$_3$S abundances surpassing those of HC$_5$N towards the dark cloud L1251, using the Effelsberg telescope at K-band (18 -- 26,GHz). L1251-1 and L1251-3 are identified as the most promising SCCC sources. The two sources harbor young stellar objects. We conducted mapping observations towards L1251-A, the western tail of L1251, at $lambda$ $sim$3,mm with the PMO 13.7 m and the NRO 45 m telescopes in lines of C$_2$H, N$_2$H$^+$, CS, HCO$^+$, SO, HC$_3$N and C$^{18}$O as well as in CO 3--2 using the JCMT. The spectral data were combined with archival data including Spitzer and Herschel continuum maps for further analysis. Filamentary sub-structures labeled as F1 to F6 were extracted in L1251, with F1 being associated with L1251-A hosting L1251-1. The peak positions of dense gas traced by HCO$^+$ are misaligned relative to those of the dust clumps. Episodic outflows are common in this region. The twisted morphology of F1 and velocity distribution along L1251-A may originate from stellar feedback. SCCC in L1251-1 may have been caused by outflow activities originated from the infrared source IRS1. The signposts of ongoing SCCC and the broadened line widths of C$_3$S and C$_4$H in L1251-1 as well as the distribution of HC$_3$N are also related to outflow activities in this region. L1251-1 (IRS1) together with the previously identified SCCC source IRS3 demonstrate that L1251-A is an excellent region to study shocked carbon chain chemistry.

قيم البحث

اقرأ أيضاً

We have analyzed ALMA Cycle 5 data in Band 4 toward three low-mass young stellar objects (YSOs), IRAS 03235+3004 (hereafter IRAS 03235), IRAS 03245+3002 (IRAS 03245), and IRAS 03271+3013 (IRAS 03271), in the Perseus region. The HC$_{3}$N ($J=16-15$; $E_{rm {up}}/k = 59.4$ K) line has been detected in all of the target sources, while four CH$_{3}$OH lines ($E_{rm {up}}/k = 15.4-36.3$ K) have been detected only in IRAS 03245. Sizes of the HC$_{3}$N distributions ($sim 2930-3230$ au) in IRAS 03235 and IRAS 03245 are similar to those of the carbon-chain species in the warm carbon chain chemistry (WCCC) source L1527. The size of the CH$_{3}$OH emission in IRAS 03245 is $sim 1760$ au, which is slightly smaller than that of HC$_{3}$N in this source. We compare the CH$_{3}$OH/HC$_{3}$N abundance ratios observed in these sources with predictions of chemical models. We confirm that the observed ratio in IRAS 03245 agrees with the modeled values at temperatures around 30--35 K, which supports the HC$_{3}$N formation by the WCCC mechanism. In this temperature range, CH$_{3}$OH does not thermally desorb from dust grains. Non-thermal desorption mechanisms or gas-phase formation of CH$_{3}$OH seem to work efficiently around IRAS 03245. The fact that IRAS 03245 has the highest bolometric luminosity among the target sources seems to support these mechanisms, in particular the non-thermal desorption mechanisms.
Chemistry plays an important role in the interstellar medium (ISM), regulating heating and cooling of the gas, and determining abundances of molecular species that trace gas properties in observations. Although solving the time-dependent equations is necessary for accurate abundances and temperature in the dynamic ISM, a full chemical network is too computationally expensive to incorporate in numerical simulations. In this paper, we propose a new simplified chemical network for hydrogen and carbon chemistry in the atomic and molecular ISM. We compare results from our chemical network in detail with results from a full photo-dissociation region (PDR) code, and also with the Nelson & Langer (1999) (NL99) network previously adopted in the simulation literature. We show that our chemical network gives similar results to the PDR code in the equilibrium abundances of all species over a wide range of densities, temperature, and metallicities, whereas the NL99 network shows significant disagreement. Applying our network in 1D models, we find that the $mathrm{CO}$-dominated regime delimits the coldest gas and that the corresponding temperature tracks the cosmic ray ionization rate in molecular clouds. We provide a simple fit for the locus of $mathrm{CO}$ dominated regions as a function of gas density and column. We also compare with observations of diffuse and translucent clouds. We find that the $mathrm{CO}$, $mathrm{CHx}$ and $mathrm{OHx}$ abundances are consistent with equilibrium predictions for densities $n=100-1000~mathrm{cm^{-3}}$, but the predicted equilibrium $mathrm{C}$ abundance is higher than observations, signaling the potential importance of non-equilibrium/dynamical effects.
164 - S. Zeng 2017
Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the Solar System may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. The aim of this project is to determine the 14N/15N ratio towards a sample of cold, massive dense cores at the initial stages in their evolution. We have observed the J=1-0 transitions of HCN, H13CN, HC15N, HN13C and H15NC toward a sample of 22 cores in 4 Infrared-Dark Clouds (IRDCs). IRDCs are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15K, the column densities of HCN, H13CN, HC15N, HN13C and H15NC are calculated and their 14N/15N ratio is determined for each core. The 14N/15N ratio measured in our sample of IRDC cores range between ~70 and >763 in HCN and between ~161 and ~541 in HNC. They are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass pre-stellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2 and G2 do not agree with the results from similar studies toward the same massive cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Amongst the 4 IRDCs we measured relatively low 14N/15N ratios towards IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN.
We have carried out observations of CCH ($N=1-0$), CH$_{3}$CN ($J=5-4$), and three $^{13}$C isotopologues of HC$_{3}$N ($J=10-9$) toward three massive young stellar objects (MYSOs), G12.89+0.49, G16.86--2.16, and G28.28--0.36, with the Nobeyama 45-m radio telescope. Combined with previous results on HC$_{5}$N, the column density ratios of $N$(CCH)/$N$(HC$_{5}$N), hereafter the CCH/HC$_{5}$N ratios, in the MYSOs are derived to be $sim 15$. This value is lower than that in a low-mass warm carbon chain chemistry (WCCC) source by more than one order of magnitude. We compare the observed CCH/HC$_{5}$N ratios with hot-core model calculations (Taniguchi et al. 2019). The observed ratios in the MYSOs can be best reproduced by models when the gas temperature is $sim 85$ K, which is higher than in L1527, a low-mass WCCC source ($sim 35$ K). These results suggest that carbon-chain molecules detected around the MYSOs exist at least partially in higher temperature regions than those in low-mass WCCC sources. There is no significant difference in column density among the three $^{13}$C isotopologues of HC$_{3}$N in G12.89+0.49 and G16.86-2.16, while HCC$^{13}$CN is more abundant than the others in G28.28--0.36. We discuss carbon-chain chemistry around the three MYSOs based on the CCH/HC$_{5}$N ratio and the $^{13}$C isotopic fractionation of HC$_{3}$N.
(Abridged) We have observed velocity resolved spectra of four ro-vibrational far-infrared transitions of C3 between the vibrational ground state and the low-energy nu2 bending mode at frequencies between 1654--1897 GHz using HIFI on board Herschel, i n DR21(OH), a high mass star forming region. Several transitions of CCH and c-C3H2 have also been observed with HIFI and the IRAM 30m telescope. A gas and grain warm-up model was used to identify the primary C3 forming reactions in DR21(OH). We have detected C3 in absorption in four far-infrared transitions, P(4), P(10), Q(2) and Q(4). The continuum sources MM1 and MM2 in DR21(OH) though spatially unresolved, are sufficiently separated in velocity to be identified in the C3 spectra. All C3 transitions are detected from the embedded source MM2 and the surrounding envelope, whereas only Q(4) & P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope and MM2 is sim6x10^{-10} and sim3x10^{-9} respectively. For CCH and c-C3H2 we only detect emission from the envelope and MM1. The observed CCH, C3, and c-C3H2 abundances are most consistent with a chemical model with n(H2)sim5x10^{6} cm^-3 post-warm-up dust temperature, T_max =30 K and a time of sim0.7-3 Myr. Post warm-up gas phase chemistry of CH4 released from the grain at tsim 0.2 Myr and lasting for 1 Myr can explain the observed C3 abundance in the envelope of DR21(OH) and no mechanism involving photodestruction of PAH molecules is required. The chemistry in the envelope is similar to the warm carbon chain chemistry (WCCC) found in lukewarm corinos. The observed lower C3 abundance in MM1 as compared to MM2 and the envelope could be indicative of destruction of C3 in the more evolved MM1. The timescale for the chemistry derived for the envelope is consistent with the dynamical timescale of 2 Myr derived for DR21(OH) in other studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا