ترغب بنشر مسار تعليمي؟ اضغط هنا

On Hankel Determinants for Dyck Paths with Peaks Avoiding Multiple Classes of Heights

158   0   0.0 ( 0 )
 نشر من قبل Sen-Peng Eu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For any integer $mge 2$ and a set $Vsubset {1,dots,m}$, let $(m,V)$ denote the union of congruence classes of the elements in $V$ modulo $m$. We study the Hankel determinants for the number of Dyck paths with peaks avoiding the heights in the set $(m,V)$. For any set $V$ of even elements of an even modulo $m$, we give an explicit description of the sequence of Hankel determinants in terms of subsequences of arithmetic progression of integers. There are numerous instances for varied $(m,V)$ with periodic sequences of Hankel determinants. We present a sufficient condition for the set $(m,V)$ such that the sequence of Hankel determinants is periodic, including even and odd modulus $m$.



قيم البحث

اقرأ أيضاً

143 - David Callan 2017
We show bijectively that Dyck paths with all peaks at odd height are counted by the Motzkin numbers and Dyck paths with all peaks at even height are counted by the Riordan numbers.
In this paper we study a subfamily of a classic lattice path, the emph{Dyck paths}, called emph{restricted $d$-Dyck} paths, in short $d$-Dyck. A valley of a Dyck path $P$ is a local minimum of $P$; if the difference between the heights of two consecu tive valleys (from left to right) is at least $d$, we say that $P$ is a restricted $d$-Dyck path. The emph{area} of a Dyck path is the sum of the absolute values of $y$-components of all points in the path. We find the number of peaks and the area of all paths of a given length in the set of $d$-Dyck paths. We give a bivariate generating function to count the number of the $d$-Dyck paths with respect to the the semi-length and number of peaks. After that, we analyze in detail the case $d=-1$. Among other things, we give both, the generating function and a recursive relation for the total area.
95 - Guoce Xin , Yingrui Zhang 2018
Garsia and Xin gave a linear algorithm for inverting the sweep map for Fuss rational Dyck paths in $D_{m,n}$ where $m=knpm 1$. They introduced an intermediate family $mathcal{T}_n^k$ of certain standard Young tableau. Then inverting the sweep map is done by a simple walking algorithm on a $Tin mathcal{T}_n^k$. We find their idea naturally extends for $mathbf{k}^pm$-Dyck paths, and also for $mathbf{k}$-Dyck paths (reducing to $k$-Dyck paths for the equal parameter case). The intermediate object becomes a similar type of tableau in $mathcal{T}_mathbf{k}$ of different column lengths. This approach is independent of the Thomas-Williams algorithm for inverting the general modular sweep map.
120 - Guo-Niu Han 2019
The Euler numbers occur in the Taylor expansion of $tan(x)+sec(x)$. Since Stieltjes, continued fractions and Hankel determinants of the even Euler numbers, on the one hand, of the odd Euler numbers, on the other hand, have been widely studied separat ely. However, no Hankel determinants of the (mixed) Euler numbers have been obtained and explicitly calculated. The reason for that is that some Hankel determinants of the Euler numbers are null. This implies that the Jacobi continued fraction of the Euler numbers does not exist. In the present paper, this obstacle is bypassed by using the Hankel continued fraction, instead of the $J$-fraction. Consequently, an explicit formula for the Hankel determinants of the Euler numbers is being derived, as well as a full list of Hankel continued fractions and Hankel determinants involving Euler numbers. Finally, a new $q$-analog of the Euler numbers $E_n(q)$ based on our continued fraction is proposed. We obtain an explicit formula for $E_n(-1)$ and prove a conjecture by R. J. Mathar on these numbers.
We introduce a new concept of permutation avoidance pattern called hatted pattern, which is a natural generalization of the barred pattern. We show the growth rate of the class of permutations avoiding a hatted pattern in comparison to barred pattern . We prove that Dyck paths with no peak at height $p$, Dyck paths with no $ud... du$ and Motzkin paths are counted by hatted pattern avoiding permutations in $s_n(132)$ by showing explicit bijections. As a result, a new direct bijection between Motzkin paths and permutations in $s_n(132)$ without two consecutive adjacent numbers is given. These permutations are also represented on the Motzkin generating tree based on the Enumerative Combinatorial Object (ECO) method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا