ترغب بنشر مسار تعليمي؟ اضغط هنا

PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation

108   0   0.0 ( 0 )
 نشر من قبل Xiangtai Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Aerial Image Segmentation is a particular semantic segmentation problem and has several challenging characteristics that general semantic segmentation does not have. There are two critical issues: The one is an extremely foreground-background imbalanced distribution, and the other is multiple small objects along with the complex background. Such problems make the recent dense affinity context modeling perform poorly even compared with baselines due to over-introduced background context. To handle these problems, we propose a point-wise affinity propagation module based on the Feature Pyramid Network (FPN) framework, named PointFlow. Rather than dense affinity learning, a sparse affinity map is generated upon selected points between the adjacent features, which reduces the noise introduced by the background while keeping efficiency. In particular, we design a dual point matcher to select points from the salient area and object boundaries, respectively. Experimental results on three different aerial segmentation datasets suggest that the proposed method is more effective and efficient than state-of-the-art general semantic segmentation methods. Especially, our methods achieve the best speed and accuracy trade-off on three aerial benchmarks. Further experiments on three general semantic segmentation datasets prove the generality of our method. Code will be provided in (https: //github.com/lxtGH/PFSegNets).



قيم البحث

اقرأ أيضاً

Semantic segmentation is a crucial task for robot navigation and safety. However, current supervised methods require a large amount of pixelwise annotations to yield accurate results. Labeling is a tedious and time consuming process that has hampered progress in low altitude UAV applications. This paper makes an important step towards automatic annotation by introducing SegProp, a novel iterative flow-based method, with a direct connection to spectral clustering in space and time, to propagate the semantic labels to frames that lack human annotations. The labels are further used in semi-supervised learning scenarios. Motivated by the lack of a large video aerial dataset, we also introduce Ruralscapes, a new dataset with high resolution (4K) images and manually-annotated dense labels every 50 frames - the largest of its kind, to the best of our knowledge. Our novel SegProp automatically annotates the remaining unlabeled 98% of frames with an accuracy exceeding 90% (F-measure), significantly outperforming other state-of-the-art label propagation methods. Moreover, when integrating other methods as modules inside SegProps iterative label propagation loop, we achieve a significant boost over the baseline labels. Finally, we test SegProp in a full semi-supervised setting: we train several state-of-the-art deep neural networks on the SegProp-automatically-labeled training frames and test them on completely novel videos. We convincingly demonstrate, every time, a significant improvement over the supervised scenario.
This paper studies the problem of learning semantic segmentation from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision signals, and struggle to make the localization maps captur e more complete object content. Rather than previous efforts that primarily focus on intra-image information, we address the value of cross-image semantic relations for comprehensive object pattern mining. To achieve this, two neural co-attentions are incorporated into the classifier to complimentarily capture cross-image semantic similarities and differences. In particular, given a pair of training images, one co-attention enforces the classifier to recognize the common semantics from co-attentive objects, while the other one, called contrastive co-attention, drives the classifier to identify the unshared semantics from the rest, uncommon objects. This helps the classifier discover more object patterns and better ground semantics in image regions. In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference, hence eventually benefiting semantic segmentation learning. More essentially, our algorithm provides a unified framework that handles well different WSSS settings, i.e., learning WSSS with (1) precise image-level supervision only, (2) extra simple single-label data, and (3) extra noisy web data. It sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability. Moreover, our approach ranked 1st place in the Weakly-Supervised Semantic Segmentation Track of CVPR2020 Learning from Imperfect Data Challenge.
In this paper, we propose an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks. As the human faces are highly structured and share unified facial components (e.g., eyes and mouths), s uch semantic information provides a strong prior for restoration. We incorporate face semantic labels as input priors and propose an adaptive structural loss to regularize facial local structures within an end-to-end deep convolutional neural network. Specifically, we first use a coarse deblurring network to reduce the motion blur on the input face image. We then adopt a parsing network to extract the semantic features from the coarse deblurred image. Finally, the fine deblurring network utilizes the semantic information to restore a clear face image. We train the network with perceptual and adversarial losses to generate photo-realistic results. The proposed method restores sharp images with more accurate facial features and details. Quantitative and qualitative evaluations demonstrate that the proposed face deblurring algorithm performs favorably against the state-of-the-art methods in terms of restoration quality, face recognition and execution speed.
In this work, we demonstrate yet another approach to tackle the amodal segmentation problem. Specifically, we first introduce a new representation, namely a semantics-aware distance map (sem-dist map), to serve as our target for amodal segmentation i nstead of the commonly used masks and heatmaps. The sem-dist map is a kind of level-set representation, of which the different regions of an object are placed into different levels on the map according to their visibility. It is a natural extension of masks and heatmaps, where modal, amodal segmentation, as well as depth order information, are all well-described. Then we also introduce a novel convolutional neural network (CNN) architecture, which we refer to as semantic layering network, to estimate sem-dist maps layer by layer, from the global-level to the instance-level, for all objects in an image. Extensive experiments on the COCOA and D2SA datasets have demonstrated that our framework can predict amodal segmentation, occlusion and depth order with state-of-the-art performance.
Understanding point clouds is of great importance. Many previous methods focus on detecting salient keypoints to identity structures of point clouds. However, existing methods neglect the semantics of points selected, leading to poor performance on d ownstream tasks. In this paper, we propose Keypoint Autoencoder, an unsupervised learning method for detecting keypoints. We encourage selecting sparse semantic keypoints by enforcing the reconstruction from keypoints to the original point cloud. To make sparse keypoint selection differentiable, Soft Keypoint Proposal is adopted by calculating weighted averages among input points. A downstream task of classifying shape with sparse keypoints is conducted to demonstrate the distinctiveness of our selected keypoints. Semantic Accuracy and Semantic Richness are proposed and our method gives competitive or even better performance than state of the arts on these two metrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا