ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Inverse Rashba-Edelstein Effect: Application to Monolayer OsBi$_2$

113   0   0.0 ( 0 )
 نشر من قبل Ning Hao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose that the hybridization between two sets of Rashba bands can lead to an unconventional topology where the two Fermi circles from different bands own in-plane helical spin textures with the same chiralities, and possess group velocities with the same directions. Under the weak spin injection, the two Fermi circles both give the positive contributions to the spin-to-charge conversion and thus induce the giant inverse Rashba-Edelstein Effect with large conversion efficiency, which is very different from the conventional Rashba-Edelstein Effect. More importantly, through the first-principles calculations, we predict that monolayer OsBi2 could be a good candidate to realize the giant inverse Rashba-Edelstein Effect. Our studies not only demonstrate a new mechanism to achieve highly efficient spin-to-charge conversion in spintronics, but also provide a promising material to realize it.

قيم البحث

اقرأ أيضاً

464 - Ye Du , Saburo Takahashi , 2018
We analyze the experimentally obtained spin-current-related magnetoresistance in epitaxial Pt/Co bilayers by using a drift-diffusion model that incorporates both bulk spin Hall effect and interfacial Rashba-Edelstein effect (REE). The magnetoresistan ce analysis yields, for the Pt/Co interface, a temperature-independent Rashba parameter in the order of 1e-11 eV m that agrees with theoretical calculations, along with an effective interfacial REE thickness of several angstroms which is in overall consistency with our previous spin-orbit torque analysis. In particular, our results suggest that both bulk and interface charge-spin current inter-
We report the observation of a spin-orbit torque (SOT) originating from the surface Rashba-Edelstein effect. We found that the SOT in a prototypical spin-orbitronic system, a Pt/Co bilayer, can be manipulated by molecular self-assembly on the Pt surf ace. This evidences that the Rashba spin-orbit coupling at the Pt surface generates a sizable SOT, which has been hidden by the strong bulk and interface spin-orbit coupling. We show that the molecular tuning of the surface Rashba-Edelstein SOT is consistent with density functional theory calculations. These results illustrate the crucial role of the surface spin-orbit coupling in the SOT generation, which alters the landscape of metallic spin-orbitronic devices.
Valley pseudospin in two-dimensional (2D) transition-metal dichalcogenides (TMDs) allows optical control of spin-valley polarization and intervalley quantum coherence. Defect states in TMDs give rise to new exciton features and theoretically exhibit spin-valley polarization; however, experimental achievement of this phenomenon remains challenges. Here, we report unambiguous valley pseudospin of defect-bound localized excitons in CVD-grown monolayer MoS2; enhanced valley Zeeman splitting with an effective g-factor of -6.2 is observed. Our results reveal that all five d-orbitals and the increased effective electron mass contribute to the band shift of defect states, demonstrating a new physics of the magnetic responses of defect-bound localized excitons, strikingly different from that of A excitons. Our work paves the way for the manipulation of the spin-valley degrees of freedom through defects toward valleytronic devices.
We observe a giant spin-orbit splitting in bulk and surface states of the non-centrosymmetric semiconductor BiTeI. We show that the Fermi level can be placed in the valence or in the conduction band by controlling the surface termination. In both cas es it intersects spin-polarized bands, in the corresponding surface depletion and accumulation layers. The momentum splitting of these bands is not affected by adsorbate-induced changes in the surface potential. These findings demonstrate that two properties crucial for enabling semiconductor-based spin electronics -- a large, robust spin splitting and ambipolar conduction -- are present in this material.
Low dimensional ferroelectrics are highly desired for applications and full of exotic physics. Here a functionalized MXene Hf$_2$CF$_2$ monolayer is theoretically studied, which manifests a nonpolar to polar transition upon moderate biaxial compressi ve strain. Accompanying this structural transition, a metal-semiconductor transition occurs. The in-plane shift of unilateral fluorine layer leads to a polarization pointing out-of-plane. Such ferroelectricity is unconventional, similar to the recently-proposed interlayer-sliding ferroelectricity but not identical. Due to its specific hexapetalous potential energy profile, the possible ferroelectric switching paths and domain walls are nontrivial, which are mediated via the metallic paraelectric state. In this sense, the metallic walls can be manipulated by reshaping the ferroelectric domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا