ﻻ يوجد ملخص باللغة العربية
Since we can leverage a large amount of unlabeled data without any human supervision to train a model and transfer the knowledge to target tasks, self-supervised learning is a de-facto component for the recent success of deep learning in various fields. However, in many cases, there is a discrepancy between a self-supervised learning objective and a task-specific objective. In order to tackle such discrepancy in Text-to-SQL task, we propose a novel self-supervised learning framework. We utilize the task-specific properties of Text-to-SQL task and the underlying structures of table contents to train the models to learn useful knowledge of the textit{header-column} alignment task from unlabeled table data. We are able to transfer the knowledge to the supervised Text-to-SQL training with annotated samples, so that the model can leverage the knowledge to better perform the textit{header-span} alignment task to predict SQL statements. Experimental results show that our self-supervised learning framework significantly improves the performance of the existing strong BERT based models without using large external corpora. In particular, our method is effective for training the model with scarce labeled data. The source code of this work is available in GitHub.
Text-to-SQL aims to map natural language questions to SQL queries. The sketch-based method combined with execution-guided (EG) decoding strategy has shown a strong performance on the WikiSQL benchmark. However, execution-guided decoding relies on dat
Recent years have seen great success in the use of neural seq2seq models on the text-to-SQL task. However, little work has paid attention to how these models generalize to realistic unseen data, which naturally raises a question: does this impressive
A new method for Text-to-SQL parsing, Grammar Pre-training (GP), is proposed to decode deep relations between question and database. Firstly, to better utilize the information of databases, a random value is added behind a question word which is reco
Single-table text-to-SQL aims to transform a natural language question into a SQL query according to one single table. Recent work has made promising progress on this task by pre-trained language models and a multi-submodule framework. However, zero-
Previous work approaches the SQL-to-text generation task using vanilla Seq2Seq models, which may not fully capture the inherent graph-structured information in SQL query. In this paper, we first introduce a strategy to represent the SQL query as a di