ترغب بنشر مسار تعليمي؟ اضغط هنا

Inducibility of the Net Graph

167   0   0.0 ( 0 )
 نشر من قبل Michael Phillips
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A graph $F$ is called a fractalizer if for all $n$ the only graphs which maximize the number of induced copies of $F$ on $n$ vertices are the balanced iterated blow ups of $F$. While the net graph is not a fractalizer, we show that the net is nearly a fractalizer. Let $N(n)$ be the maximum number of induced copies of the net graph among all graphs on $n$ vertices. For sufficiently large $n$ we show that, $N(n) = x_1cdot x_2 cdot x_3 cdot x_4 cdot x_5 cdot x_6 + N(x_1) + N(x_2) + N(x_3) + N(x_4) + N(x_5) + N(x_6)$ where $sigma x_i = n$ and all $x_i$ are as equal as possible. Furthermore, we show that the unique graph which maximizes $N(6^k)$ is the balanced iterated blow up of the net for $k$ sufficiently large. We expand on the standard flag algebra and stability techniques through more careful counting and numerical optimization techniques.

قيم البحث

اقرأ أيضاً

We present a sufficient condition for the stability property of extremal graph problems that can be solved via Zykovs symmetrisation. Our criterion is stated in terms of an analytic limit version of the problem. We show that, for example, it applies to the inducibility problem for an arbitrary complete bipartite graph $B$, which asks for the maximum number of induced copies of $B$ in an $n$-vertex graph, and to the inducibility problem for $K_{2,1,1,1}$ and $K_{3,1,1}$, the only complete partite graphs on at most five vertices for which the problem was previously open.
A long standing open problem in extremal graph theory is to describe all graphs that maximize the number of induced copies of a path on four vertices. The character of the problem changes in the setting of oriented graphs, and becomes more tractable. Here we resolve this problem in the setting of oriented graphs without transitive triangles.
We determine the inducibility of all tournaments with at most $4$ vertices together with the extremal constructions. The $4$-vertex tournament containing an oriented $C_3$ and one source vertex has a particularly interesting extremal construction. It is an unbalanced blow-up of an edge, where the sink vertex is replaced by a quasi-random tournament and the source vertex is iteratively replaced by a copy of the construction itself.
In 1971, Tutte wrote in an article that it is tempting to conjecture that every 3-connected bipartite cubic graph is hamiltonian. Motivated by this remark, Horton constructed a counterexample on 96 vertices. In a sequence of articles by different aut hors several smaller counterexamples were presented. The smallest of these graphs is a graph on 50 vertices which was discovered independently by Georges and Kelmans. In this article we show that there is no smaller counterexample. As all non-hamiltonian 3-connected bipartite cubic graphs in the literature have cyclic 4-cuts -- even if they have girth 6 -- it is natural to ask whether this is a necessary prerequisite. In this article we answer this question in the negative and give a construction of an infinite family of non-hamiltonian cyclically 5-connected bipartite cubic graphs. In 1969, Barnette gave a weaker version of the conjecture stating that 3-connected planar bipartite cubic graphs are hamiltonian. We show that Barnettes conjecture is true up to at least 90 vertices. We also report that a search of small non-hamiltonian 3-connected bipartite cubic graphs did not find any with genus less than 4.
The random reversal graph offers new perspectives, allowing to study the connectivity of genomes as well as their most likely distance as a function of the reversal rate. Our main result shows that the structure of the random reversal graph changes d ramatically at $lambda_n=1/binom{n+1}{2}$. For $lambda_n=(1-epsilon)/binom{n+1}{2}$, the random graph consists of components of size at most $O(nln(n))$ a.s. and for $(1+epsilon)/binom{n+1}{2}$, there emerges a unique largest component of size $sim wp(epsilon) cdot 2^ncdot n$!$ a.s.. This giant component is furthermore dense in the reversal graph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا