ﻻ يوجد ملخص باللغة العربية
New measurement and assessment techniques have been applied to the radiochemical re-evaluation of the Trinity Event. Thirteen trinitite samples were dissolved and analyzed using a combination of traditional decay counting methods and the mass spectrometry techniques. The resulting data were assessed using advanced simulation tools to afford a final yield determination of $24.8 pm 2$ kilotons TNT equivalent, substantially higher than the previous DOE released value of 21 kilotons. This article is intended to complement the work of Susan Hanson and Warren Oldham, seen elsewhere in this issue.
On July 16, 1945, the Trinity nuclear test exploded in the desert near Alamogordo, NM. A variety of new diagnostic experiments were fielded in an effort to understand the detailed performance of the nuclear device. This article describes a series of
On February 16, 1951, at the atomic energy pilot plant on Huemul Island, San Carlos de Bariloche, thermonuclear reactions were carried out under control conditions on a technical scale. This is how Gral. Peron announced, on March 24, 1951, the amazin
Forty years ago, Richard Feynman proposed harnessing quantum physics to build a more powerful kind of computer. Realizing Feynmans vision is one of the grand challenges facing 21st century science and technology. In this article, well recall Feynmans
In 1995, a team of physicists from the Budker Institute of Nuclear Physics in Novosibirsk was able to observe the splitting of a photon in the Coulomb field of an atomic nucleus for the first time, and reported the preliminary results of this experim
Three years after the completion of the next-to-leading order calculation, the status of the theoretical estimates of $epsilon/epsilon$ is reviewed. In spite of the theoretical progress, the prediction of $epsilon/epsilon$ is still affected by a 100%